File: bvar_forecast.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (184 lines) | stat: -rw-r--r-- 6,190 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
function bvar_forecast(nlags)
% function bvar_forecast(nlags)
% builds forecats for a bvar model
%
% INPUTS
%    nlags:     number of lags for the bvar
%
% OUTPUTS
%    none
%
% SPECIAL REQUIREMENTS
%    none

% Copyright (C) 2007-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global options_ oo_ M_

if options_.forecast == 0
    error('bvar_forecast: you must specify "forecast" option')
end
[ny, nx, posterior, prior, forecast_data] = bvar_toolbox(nlags);

sims_no_shock = NaN(options_.forecast, ny, options_.bvar_replic);
sims_with_shocks = NaN(options_.forecast, ny, options_.bvar_replic);

S_inv_upper_chol = chol(inv(posterior.S));

% Option 'lower' of chol() not available in old versions of
% Matlab, so using transpose
XXi_lower_chol = chol(posterior.XXi)';

k = ny*nlags+nx;

% Declaration of the companion matrix
Companion_matrix = diag(ones(ny*(nlags-1),1),-ny);

% Number of explosive VAR models sampled
p = 0;
% Loop counter initialization
d = 0;
while d <= options_.bvar_replic
    
    Sigma = rand_inverse_wishart(ny, posterior.df, S_inv_upper_chol);

    % Option 'lower' of chol() not available in old versions of
    % Matlab, so using transpose
    Sigma_lower_chol = chol(Sigma)';

    Phi = rand_matrix_normal(k, ny, posterior.PhiHat, Sigma_lower_chol, XXi_lower_chol);
    
    % All the eigenvalues of the companion matrix have to be on or inside the unit circle
    Companion_matrix(1:ny,:) = Phi(1:ny*nlags,:)'; 
    test = (abs(eig(Companion_matrix)));
    if any(test>1.0000000000001)
        p = p+1;
    end
    d = d+1;
    
    % Without shocks
    lags_data = forecast_data.initval;
    for t = 1:options_.forecast
        X = [ reshape(flipdim(lags_data, 1)', 1, ny*nlags) forecast_data.xdata(t, :) ];
        y = X * Phi;
        lags_data(1:end-1,:) = lags_data(2:end, :);
        lags_data(end,:) = y;
        sims_no_shock(t, :, d) = y;
    end
    
    % With shocks
    lags_data = forecast_data.initval;
    for t = 1:options_.forecast
        X = [ reshape(flipdim(lags_data, 1)', 1, ny*nlags) forecast_data.xdata(t, :) ];
        shock = (Sigma_lower_chol * randn(ny, 1))';
        y = X * Phi + shock;
        lags_data(1:end-1,:) = lags_data(2:end, :);
        lags_data(end,:) = y;
        sims_with_shocks(t, :, d) = y;
    end
end

if p > 0
    disp(' ')
    disp(['Some of the VAR models sampled from the posterior distribution'])
    disp(['were found to be explosive (' num2str(p/options_.bvar_replic) ' percent).'])
    disp(' ')
end

% Plot graphs
sims_no_shock_mean = mean(sims_no_shock, 3);

sort_idx = round((0.5 + [-options_.conf_sig, options_.conf_sig, 0]/2) * options_.bvar_replic);

sims_no_shock_sort = sort(sims_no_shock, 3);
sims_no_shock_down_conf = sims_no_shock_sort(:, :, sort_idx(1));
sims_no_shock_up_conf = sims_no_shock_sort(:, :, sort_idx(2));
sims_no_shock_median = sims_no_shock_sort(:, :, sort_idx(3));

sims_with_shocks_sort = sort(sims_with_shocks, 3);
sims_with_shocks_down_conf = sims_with_shocks_sort(:, :, sort_idx(1));
sims_with_shocks_up_conf = sims_with_shocks_sort(:, :, sort_idx(2));

dynare_graph_init(sprintf('BVAR forecasts (nlags = %d)', nlags), ny, {'b-' 'g-' 'g-' 'r-' 'r-'});

for i = 1:ny
    dynare_graph([ sims_no_shock_median(:, i) ...
                   sims_no_shock_up_conf(:, i) sims_no_shock_down_conf(:, i) ...
                   sims_with_shocks_up_conf(:, i) sims_with_shocks_down_conf(:, i) ], ...
                 options_.varobs(i, :));
end

dynare_graph_close;


% Compute RMSE

if ~isempty(forecast_data.realized_val)
    
    sq_err_cumul = zeros(1, ny);
    
    lags_data = forecast_data.initval;
    for t = 1:size(forecast_data.realized_val, 1)
        X = [ reshape(flipdim(lags_data, 1)', 1, ny*nlags) forecast_data.realized_xdata(t, :) ];
        y = X * posterior.PhiHat;
        lags_data(1:end-1,:) = lags_data(2:end, :);
        lags_data(end,:) = y;
        sq_err_cumul = sq_err_cumul + (y - forecast_data.realized_val(t, :)) .^ 2;
    end
    
    rmse = sqrt(sq_err_cumul / size(forecast_data.realized_val, 1));
    
    fprintf('RMSE of BVAR(%d):\n', nlags);
    
    for i = 1:size(options_.varobs, 1)
        fprintf('%s: %10.4f\n', options_.varobs(i, :), rmse(i));
    end 
end

% Store results

DirectoryName = [ M_.fname '/bvar_forecast' ];
if ~isdir(DirectoryName)
    if ~isdir(M_.fname)
        mkdir(M_.fname);
    end
    mkdir(DirectoryName);
end
save([ DirectoryName '/simulations.mat'], 'sims_no_shock', 'sims_with_shocks');

for i = 1:size(options_.varobs, 1)
    name = options_.varobs(i, :);

    sims = squeeze(sims_with_shocks(:,i,:));
    eval(['oo_.bvar.forecast.with_shocks.Mean.' name ' = mean(sims, 2);']);
    eval(['oo_.bvar.forecast.with_shocks.Median.' name ' = median(sims, 2);']);
    eval(['oo_.bvar.forecast.with_shocks.Var.' name ' = var(sims, 0, 2);']);
    eval(['oo_.bvar.forecast.with_shocks.HPDsup.' name ' = sims_with_shocks_up_conf(:,i);']);
    eval(['oo_.bvar.forecast.with_shocks.HPDinf.' name ' = sims_with_shocks_down_conf(:,i);']);

    sims = squeeze(sims_no_shock(:,i,:));
    eval(['oo_.bvar.forecast.no_shock.Mean.' name ' = sims_no_shock_mean(:,i);']);
    eval(['oo_.bvar.forecast.no_shock.Median.' name ' = sims_no_shock_median(:,i);']);
    eval(['oo_.bvar.forecast.no_shock.Var.' name ' = var(sims, 0, 2);']);
    eval(['oo_.bvar.forecast.no_shock.HPDsup.' name ' = sims_no_shock_up_conf(:,i);']);
    eval(['oo_.bvar.forecast.no_shock.HPDinf.' name ' = sims_no_shock_down_conf(:,i);']);

    if exist('rmse')
        eval(['oo_.bvar.forecast.rmse.' name ' = rmse(i);']);
    end
end