1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
function [fval,cost_flag,ys,trend_coeff,info] = dsge_posterior_kernel(xparam1,gend,data,data_index,number_of_observations,no_more_missing_observations)
% function [fval,cost_flag,ys,trend_coeff,info] = dsge_posterior_kernel(xparam1,gend,data,data_index,number_of_observations,no_more_missing_observations)
% Evaluates the posterior kernel of a dsge model.
%
% INPUTS
% xparam1 [double] vector of model parameters.
% gend [integer] scalar specifying the number of observations.
% data [double] matrix of data
% data_index [cell] cell of column vectors
% number_of_observations [integer]
% no_more_missing_observations [integer]
% OUTPUTS
% fval : value of the posterior kernel at xparam1.
% cost_flag : zero if the function returns a penalty, one otherwise.
% ys : steady state of original endogenous variables
% trend_coeff :
% info : vector of informations about the penalty:
% 41: one (many) parameter(s) do(es) not satisfied the lower bound
% 42: one (many) parameter(s) do(es) not satisfied the upper bound
%
% SPECIAL REQUIREMENTS
%
% Copyright (C) 2004-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global bayestopt_ estim_params_ options_ trend_coeff_ M_ oo_
fval = [];
ys = [];
trend_coeff = [];
cost_flag = 1;
nobs = size(options_.varobs,1);
%------------------------------------------------------------------------------
% 1. Get the structural parameters & define penalties
%------------------------------------------------------------------------------
if ~isequal(options_.mode_compute,1) && any(xparam1 < bayestopt_.lb)
k = find(xparam1 < bayestopt_.lb);
fval = bayestopt_.penalty+sum((bayestopt_.lb(k)-xparam1(k)).^2);
cost_flag = 0;
info = 41;
return;
end
if ~isequal(options_.mode_compute,1) && any(xparam1 > bayestopt_.ub)
k = find(xparam1 > bayestopt_.ub);
fval = bayestopt_.penalty+sum((xparam1(k)-bayestopt_.ub(k)).^2);
cost_flag = 0;
info = 42;
return;
end
Q = M_.Sigma_e;
H = M_.H;
for i=1:estim_params_.nvx
k =estim_params_.var_exo(i,1);
Q(k,k) = xparam1(i)*xparam1(i);
end
offset = estim_params_.nvx;
if estim_params_.nvn
for i=1:estim_params_.nvn
k = estim_params_.var_endo(i,1);
H(k,k) = xparam1(i+offset)*xparam1(i+offset);
end
offset = offset+estim_params_.nvn;
end
if estim_params_.ncx
for i=1:estim_params_.ncx
k1 =estim_params_.corrx(i,1);
k2 =estim_params_.corrx(i,2);
Q(k1,k2) = xparam1(i+offset)*sqrt(Q(k1,k1)*Q(k2,k2));
Q(k2,k1) = Q(k1,k2);
end
[CholQ,testQ] = chol(Q);
if testQ %% The variance-covariance matrix of the structural innovations is not definite positive.
%% We have to compute the eigenvalues of this matrix in order to build the penalty.
a = diag(eig(Q));
k = find(a < 0);
if k > 0
fval = bayestopt_.penalty+sum(-a(k));
cost_flag = 0;
info = 43;
return
end
end
offset = offset+estim_params_.ncx;
end
if estim_params_.ncn
for i=1:estim_params_.ncn
k1 = options_.lgyidx2varobs(estim_params_.corrn(i,1));
k2 = options_.lgyidx2varobs(estim_params_.corrn(i,2));
H(k1,k2) = xparam1(i+offset)*sqrt(H(k1,k1)*H(k2,k2));
H(k2,k1) = H(k1,k2);
end
[CholH,testH] = chol(H);
if testH
a = diag(eig(H));
k = find(a < 0);
if k > 0
fval = bayestopt_.penalty+sum(-a(k));
cost_flag = 0;
info = 44;
return
end
end
offset = offset+estim_params_.ncn;
end
if estim_params_.np > 0
M_.params(estim_params_.param_vals(:,1)) = xparam1(offset+1:end);
end
M_.Sigma_e = Q;
M_.H = H;
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
[T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);
if info(1) == 1 || info(1) == 2 || info(1) == 5
fval = bayestopt_.penalty+1;
cost_flag = 0;
return
elseif info(1) == 3 || info(1) == 4 || info(1) == 20
fval = bayestopt_.penalty+info(2);%^2; % penalty power raised in DR1.m and resol already. GP July'08
cost_flag = 0;
return
end
bayestopt_.mf = bayestopt_.mf1;
if ~options_.noconstant
if options_.loglinear == 1
constant = log(SteadyState(bayestopt_.mfys));
else
constant = SteadyState(bayestopt_.mfys);
end
else
constant = zeros(nobs,1);
end
if bayestopt_.with_trend == 1
trend_coeff = zeros(nobs,1);
t = options_.trend_coeffs;
for i=1:length(t)
if ~isempty(t{i})
trend_coeff(i) = evalin('base',t{i});
end
end
trend = repmat(constant,1,gend)+trend_coeff*[1:gend];
else
trend = repmat(constant,1,gend);
end
start = options_.presample+1;
np = size(T,1);
mf = bayestopt_.mf;
no_missing_data_flag = (number_of_observations==gend*nobs);
%------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
%------------------------------------------------------------------------------
kalman_algo = options_.kalman_algo;
if options_.lik_init == 1 % Kalman filter
if kalman_algo ~= 2
kalman_algo = 1;
end
Pstar = lyapunov_symm(T,R*Q*R',options_.qz_criterium,options_.lyapunov_complex_threshold);
Pinf = [];
elseif options_.lik_init == 2 % Old Diffuse Kalman filter
if kalman_algo ~= 2
kalman_algo = 1;
end
Pstar = 10*eye(np);
Pinf = [];
elseif options_.lik_init == 3 % Diffuse Kalman filter
if kalman_algo ~= 4
kalman_algo = 3;
end
[QT,ST] = schur(T);
e1 = abs(ordeig(ST)) > 2-options_.qz_criterium;
[QT,ST] = ordschur(QT,ST,e1);
k = find(abs(ordeig(ST)) > 2-options_.qz_criterium);
nk = length(k);
nk1 = nk+1;
Pinf = zeros(np,np);
Pinf(1:nk,1:nk) = eye(nk);
Pstar = zeros(np,np);
B = QT'*R*Q*R'*QT;
for i=np:-1:nk+2
if ST(i,i-1) == 0
if i == np
c = zeros(np-nk,1);
else
c = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i,i+1:end)')+...
ST(i,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i);
end
q = eye(i-nk)-ST(nk1:i,nk1:i)*ST(i,i);
Pstar(nk1:i,i) = q\(B(nk1:i,i)+c);
Pstar(i,nk1:i-1) = Pstar(nk1:i-1,i)';
else
if i == np
c = zeros(np-nk,1);
c1 = zeros(np-nk,1);
else
c = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i,i+1:end)')+...
ST(i,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i)+...
ST(i,i-1)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i-1);
c1 = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i-1,i+1:end)')+...
ST(i-1,i-1)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i-1)+...
ST(i-1,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i);
end
q = [eye(i-nk)-ST(nk1:i,nk1:i)*ST(i,i) -ST(nk1:i,nk1:i)*ST(i,i-1);...
-ST(nk1:i,nk1:i)*ST(i-1,i) eye(i-nk)-ST(nk1:i,nk1:i)*ST(i-1,i-1)];
z = q\[B(nk1:i,i)+c;B(nk1:i,i-1)+c1];
Pstar(nk1:i,i) = z(1:(i-nk));
Pstar(nk1:i,i-1) = z(i-nk+1:end);
Pstar(i,nk1:i-1) = Pstar(nk1:i-1,i)';
Pstar(i-1,nk1:i-2) = Pstar(nk1:i-2,i-1)';
i = i - 1;
end
end
if i == nk+2
c = ST(nk+1,:)*(Pstar(:,nk+2:end)*ST(nk1,nk+2:end)')+ST(nk1,nk1)*ST(nk1,nk+2:end)*Pstar(nk+2:end,nk1);
Pstar(nk1,nk1)=(B(nk1,nk1)+c)/(1-ST(nk1,nk1)*ST(nk1,nk1));
end
Z = QT(mf,:);
R1 = QT'*R;
[QQ,RR,EE] = qr(Z*ST(:,1:nk),0);
k = find(abs(diag(RR)) < 1e-8);
if length(k) > 0
k1 = EE(:,k);
dd =ones(nk,1);
dd(k1) = zeros(length(k1),1);
Pinf(1:nk,1:nk) = diag(dd);
end
end
if kalman_algo == 2
no_correlation_flag = 1;
if length(H)==1
H = zeros(nobs,1);
else
if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
H = diag(H);
else
no_correlation_flag = 0;
end
end
end
kalman_tol = options_.kalman_tol;
riccati_tol = options_.riccati_tol;
mf = bayestopt_.mf1;
Y = data-trend;
%------------------------------------------------------------------------------
% 4. Likelihood evaluation
%------------------------------------------------------------------------------
if (kalman_algo==1)% Multivariate Kalman Filter
if no_missing_data_flag
LIK = kalman_filter(T,R,Q,H,Pstar,Y,start,mf,kalman_tol,riccati_tol);
else
LIK = ...
missing_observations_kalman_filter(T,R,Q,H,Pstar,Y,start,mf,kalman_tol,riccati_tol, ...
data_index,number_of_observations,no_more_missing_observations);
end
if isinf(LIK)
kalman_algo = 2;
end
end
if (kalman_algo==2)% Univariate Kalman Filter
if no_correlation_flag
LIK = univariate_kalman_filter(T,R,Q,H,Pstar,Y,start,mf,kalman_tol,riccati_tol,data_index,number_of_observations,no_more_missing_observations);
else
LIK = univariate_kalman_filter_corr(T,R,Q,H,Pstar,Y,start,mf,kalman_tol,riccati_tol,data_index,number_of_observations,no_more_missing_observations);
end
end
if (kalman_algo==3)% Multivariate Diffuse Kalman Filter
if no_missing_data_flag
LIK = diffuse_kalman_filter(ST,R1,Q,H,Pinf,Pstar,Y,start,Z,kalman_tol,riccati_tol);
else
LIK = missing_observations_diffuse_kalman_filter(ST,R1,Q,H,Pinf,Pstar,Y,start,Z,kalman_tol,riccati_tol,...
data_index,number_of_observations,no_more_missing_observations);
end
if isinf(LIK)
kalman_algo = 4;
end
end
if (kalman_algo==4)% Univariate Diffuse Kalman Filter
if no_correlation_flag
LIK = univariate_diffuse_kalman_filter(ST,R1,Q,H,Pinf,Pstar,Y,start,Z,kalman_tol,riccati_tol,...
data_index,number_of_observations,no_more_missing_observations);
else
LIK = univariate_diffuse_kalman_filter_corr(ST,R1,Q,H,Pinf,Pstar,Y,start,Z,kalman_tol,riccati_tol,...
data_index,number_of_observations,no_more_missing_observations);
end
end
if imag(LIK) ~= 0
likelihood = bayestopt_.penalty;
else
likelihood = LIK;
end
% ------------------------------------------------------------------------------
% Adds prior if necessary
% ------------------------------------------------------------------------------
lnprior = priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
fval = (likelihood-lnprior);
options_.kalman_algo = kalman_algo;
|