File: dsge_posterior_kernel.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (309 lines) | stat: -rw-r--r-- 11,722 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
function [fval,cost_flag,ys,trend_coeff,info] = dsge_posterior_kernel(xparam1,gend,data,data_index,number_of_observations,no_more_missing_observations)
% function [fval,cost_flag,ys,trend_coeff,info] = dsge_posterior_kernel(xparam1,gend,data,data_index,number_of_observations,no_more_missing_observations)
% Evaluates the posterior kernel of a dsge model. 
% 
% INPUTS 
%   xparam1                        [double]   vector of model parameters.
%   gend                           [integer]  scalar specifying the number of observations.
%   data                           [double]   matrix of data
%   data_index                     [cell]     cell of column vectors
%   number_of_observations         [integer]
%   no_more_missing_observations   [integer] 
% OUTPUTS 
%   fval        :     value of the posterior kernel at xparam1.
%   cost_flag   :     zero if the function returns a penalty, one otherwise.
%   ys          :     steady state of original endogenous variables
%   trend_coeff :
%   info        :     vector of informations about the penalty:
%                     41: one (many) parameter(s) do(es) not satisfied the lower bound
%                     42: one (many) parameter(s) do(es) not satisfied the upper bound
%               
% SPECIAL REQUIREMENTS
%

% Copyright (C) 2004-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global bayestopt_ estim_params_ options_ trend_coeff_ M_ oo_
fval            = [];
ys              = [];
trend_coeff     = [];
cost_flag       = 1;
nobs            = size(options_.varobs,1);
%------------------------------------------------------------------------------
% 1. Get the structural parameters & define penalties
%------------------------------------------------------------------------------
if ~isequal(options_.mode_compute,1) && any(xparam1 < bayestopt_.lb)
    k = find(xparam1 < bayestopt_.lb);
    fval = bayestopt_.penalty+sum((bayestopt_.lb(k)-xparam1(k)).^2);
    cost_flag = 0;
    info = 41;
    return;
end
if ~isequal(options_.mode_compute,1) && any(xparam1 > bayestopt_.ub)
    k = find(xparam1 > bayestopt_.ub);
    fval = bayestopt_.penalty+sum((xparam1(k)-bayestopt_.ub(k)).^2);
    cost_flag = 0;
    info = 42;
    return;
end
Q = M_.Sigma_e;
H = M_.H;
for i=1:estim_params_.nvx
    k =estim_params_.var_exo(i,1);
    Q(k,k) = xparam1(i)*xparam1(i);
end
offset = estim_params_.nvx;
if estim_params_.nvn
    for i=1:estim_params_.nvn
        k = estim_params_.var_endo(i,1);
        H(k,k) = xparam1(i+offset)*xparam1(i+offset);
    end
    offset = offset+estim_params_.nvn;
end     
if estim_params_.ncx
    for i=1:estim_params_.ncx
        k1 =estim_params_.corrx(i,1);
        k2 =estim_params_.corrx(i,2);
        Q(k1,k2) = xparam1(i+offset)*sqrt(Q(k1,k1)*Q(k2,k2));
        Q(k2,k1) = Q(k1,k2);
    end
    [CholQ,testQ] = chol(Q);
    if testQ    %% The variance-covariance matrix of the structural innovations is not definite positive.
        %% We have to compute the eigenvalues of this matrix in order to build the penalty.
        a = diag(eig(Q));
        k = find(a < 0);
        if k > 0
            fval = bayestopt_.penalty+sum(-a(k));
            cost_flag = 0;
            info = 43;
            return
        end
    end
    offset = offset+estim_params_.ncx;
end
if estim_params_.ncn 
    for i=1:estim_params_.ncn
        k1 = options_.lgyidx2varobs(estim_params_.corrn(i,1));
        k2 = options_.lgyidx2varobs(estim_params_.corrn(i,2));
        H(k1,k2) = xparam1(i+offset)*sqrt(H(k1,k1)*H(k2,k2));
        H(k2,k1) = H(k1,k2);
    end
    [CholH,testH] = chol(H);
    if testH
        a = diag(eig(H));
        k = find(a < 0);
        if k > 0
            fval = bayestopt_.penalty+sum(-a(k));
            cost_flag = 0;
            info = 44;
            return
        end
    end
    offset = offset+estim_params_.ncn;
end
if estim_params_.np > 0
    M_.params(estim_params_.param_vals(:,1)) = xparam1(offset+1:end);
end
M_.Sigma_e = Q;
M_.H = H;
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
[T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);
if info(1) == 1 || info(1) == 2 || info(1) == 5
    fval = bayestopt_.penalty+1;
    cost_flag = 0;
    return
elseif info(1) == 3 || info(1) == 4 || info(1) == 20
    fval = bayestopt_.penalty+info(2);%^2; % penalty power raised in DR1.m and resol already. GP July'08
    cost_flag = 0;
    return
end
bayestopt_.mf = bayestopt_.mf1;
if ~options_.noconstant
    if options_.loglinear == 1
        constant = log(SteadyState(bayestopt_.mfys));
    else
        constant = SteadyState(bayestopt_.mfys);
    end
else
    constant = zeros(nobs,1);
end
if bayestopt_.with_trend == 1
    trend_coeff = zeros(nobs,1);
    t = options_.trend_coeffs;
    for i=1:length(t)
        if ~isempty(t{i})
            trend_coeff(i) = evalin('base',t{i});
        end
    end
    trend = repmat(constant,1,gend)+trend_coeff*[1:gend];
else
    trend = repmat(constant,1,gend);
end
start = options_.presample+1;
np    = size(T,1);
mf    = bayestopt_.mf;
no_missing_data_flag = (number_of_observations==gend*nobs);
%------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
%------------------------------------------------------------------------------
kalman_algo = options_.kalman_algo;
if options_.lik_init == 1               % Kalman filter
    if kalman_algo ~= 2
        kalman_algo = 1;
    end
    Pstar = lyapunov_symm(T,R*Q*R',options_.qz_criterium,options_.lyapunov_complex_threshold);
    Pinf        = [];
elseif options_.lik_init == 2   % Old Diffuse Kalman filter
    if kalman_algo ~= 2
        kalman_algo = 1;
    end
    Pstar = 10*eye(np);
    Pinf = [];
elseif options_.lik_init == 3   % Diffuse Kalman filter
    if kalman_algo ~= 4
        kalman_algo = 3;
    end
    [QT,ST] = schur(T);
    e1 = abs(ordeig(ST)) > 2-options_.qz_criterium;
    [QT,ST] = ordschur(QT,ST,e1);
    k = find(abs(ordeig(ST)) > 2-options_.qz_criterium);
    nk = length(k);
    nk1 = nk+1;
    Pinf = zeros(np,np);
    Pinf(1:nk,1:nk) = eye(nk);
    Pstar = zeros(np,np);
    B = QT'*R*Q*R'*QT;
    for i=np:-1:nk+2
        if ST(i,i-1) == 0
            if i == np
                c = zeros(np-nk,1);
            else
                c = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i,i+1:end)')+...
                    ST(i,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i);
            end
            q = eye(i-nk)-ST(nk1:i,nk1:i)*ST(i,i);
            Pstar(nk1:i,i) = q\(B(nk1:i,i)+c);
            Pstar(i,nk1:i-1) = Pstar(nk1:i-1,i)';
        else
            if i == np
                c = zeros(np-nk,1);
                c1 = zeros(np-nk,1);
            else
                c = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i,i+1:end)')+...
                    ST(i,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i)+...
                    ST(i,i-1)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i-1);
                c1 = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i-1,i+1:end)')+...
                     ST(i-1,i-1)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i-1)+...
                     ST(i-1,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i);
            end
            q = [eye(i-nk)-ST(nk1:i,nk1:i)*ST(i,i) -ST(nk1:i,nk1:i)*ST(i,i-1);...
                 -ST(nk1:i,nk1:i)*ST(i-1,i) eye(i-nk)-ST(nk1:i,nk1:i)*ST(i-1,i-1)];
            z =  q\[B(nk1:i,i)+c;B(nk1:i,i-1)+c1];
            Pstar(nk1:i,i) = z(1:(i-nk));
            Pstar(nk1:i,i-1) = z(i-nk+1:end);
            Pstar(i,nk1:i-1) = Pstar(nk1:i-1,i)';
            Pstar(i-1,nk1:i-2) = Pstar(nk1:i-2,i-1)';
            i = i - 1;
        end
    end
    if i == nk+2
        c = ST(nk+1,:)*(Pstar(:,nk+2:end)*ST(nk1,nk+2:end)')+ST(nk1,nk1)*ST(nk1,nk+2:end)*Pstar(nk+2:end,nk1);
        Pstar(nk1,nk1)=(B(nk1,nk1)+c)/(1-ST(nk1,nk1)*ST(nk1,nk1));
    end
    Z = QT(mf,:);
    R1 = QT'*R;
    [QQ,RR,EE] = qr(Z*ST(:,1:nk),0);
    k = find(abs(diag(RR)) < 1e-8);
    if length(k) > 0
        k1 = EE(:,k);
        dd =ones(nk,1);
        dd(k1) = zeros(length(k1),1);
        Pinf(1:nk,1:nk) = diag(dd);
    end
end
if kalman_algo == 2
    no_correlation_flag = 1;
    if length(H)==1
        H = zeros(nobs,1);
    else
        if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
            H = diag(H);
        else
            no_correlation_flag = 0;
        end
    end
end
kalman_tol = options_.kalman_tol;
riccati_tol = options_.riccati_tol;
mf = bayestopt_.mf1;
Y   = data-trend;
%------------------------------------------------------------------------------
% 4. Likelihood evaluation
%------------------------------------------------------------------------------
if (kalman_algo==1)% Multivariate Kalman Filter
    if no_missing_data_flag
        LIK = kalman_filter(T,R,Q,H,Pstar,Y,start,mf,kalman_tol,riccati_tol); 
    else
        LIK = ...
            missing_observations_kalman_filter(T,R,Q,H,Pstar,Y,start,mf,kalman_tol,riccati_tol, ...
                                               data_index,number_of_observations,no_more_missing_observations);
    end
    if isinf(LIK)
        kalman_algo = 2;
    end
end
if (kalman_algo==2)% Univariate Kalman Filter
    if no_correlation_flag
        LIK = univariate_kalman_filter(T,R,Q,H,Pstar,Y,start,mf,kalman_tol,riccati_tol,data_index,number_of_observations,no_more_missing_observations);
    else
        LIK = univariate_kalman_filter_corr(T,R,Q,H,Pstar,Y,start,mf,kalman_tol,riccati_tol,data_index,number_of_observations,no_more_missing_observations);
    end
end
if (kalman_algo==3)% Multivariate Diffuse Kalman Filter
    if no_missing_data_flag
        LIK = diffuse_kalman_filter(ST,R1,Q,H,Pinf,Pstar,Y,start,Z,kalman_tol,riccati_tol);
    else
        LIK = missing_observations_diffuse_kalman_filter(ST,R1,Q,H,Pinf,Pstar,Y,start,Z,kalman_tol,riccati_tol,...
                                                         data_index,number_of_observations,no_more_missing_observations);
    end
    if isinf(LIK)
        kalman_algo = 4;
    end
end
if (kalman_algo==4)% Univariate Diffuse Kalman Filter
    if no_correlation_flag
        LIK = univariate_diffuse_kalman_filter(ST,R1,Q,H,Pinf,Pstar,Y,start,Z,kalman_tol,riccati_tol,...
                                               data_index,number_of_observations,no_more_missing_observations);
    else
        LIK = univariate_diffuse_kalman_filter_corr(ST,R1,Q,H,Pinf,Pstar,Y,start,Z,kalman_tol,riccati_tol,...
                                                    data_index,number_of_observations,no_more_missing_observations);
    end
end
if imag(LIK) ~= 0
    likelihood = bayestopt_.penalty;
else
    likelihood = LIK;
end
% ------------------------------------------------------------------------------
% Adds prior if necessary
% ------------------------------------------------------------------------------
lnprior = priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
fval    = (likelihood-lnprior);
options_.kalman_algo = kalman_algo;