1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
function [dr,info] = dyn_first_order_solver(jacobia,M_,dr,options,task)
%@info:
%! @deftypefn {Function File} {[@var{dr},@var{info}] =} dyn_first_order_solver (@var{jacobia},@var{M_},@var{dr},@var{options},@var{task})
%! @anchor{dyn_first_order_solver}
%! @sp 1
%! Computes the first order reduced form of the DSGE model
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item jacobia
%! Matrix containing the Jacobian of the model
%! @item M_
%! Matlab's structure describing the model (initialized by @code{dynare}).
%! @item dr
%! Matlab's structure describing the reduced form solution of the model.
%! @item qz_criterium
%! Double containing the criterium to separate explosive from stable eigenvalues
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item dr
%! Matlab's structure describing the reduced form solution of the model.
%! @item info
%! Integer scalar, error code.
%! @sp 1
%! @table @ @code
%! @item info==0
%! No error.
%! @item info==1
%! The model doesn't determine the current variables uniquely.
%! @item info==2
%! MJDGGES returned an error code.
%! @item info==3
%! Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
%! @item info==4
%! Blanchard & Kahn conditions are not satisfied: indeterminacy.
%! @item info==5
%! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
%! @item info==7
%! One of the generalized eigenvalues is close to 0/0
%! @end table
%! @end table
%! @end deftypefn
%@eod:
% Copyright (C) 2001-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
info = 0;
dr.ghx = [];
dr.ghu = [];
klen = M_.maximum_endo_lag+M_.maximum_endo_lead+1;
kstate = dr.kstate;
kad = dr.kad;
kae = dr.kae;
nstatic = dr.nstatic;
nfwrd = dr.nfwrd;
npred = dr.npred;
nboth = dr.nboth;
order_var = dr.order_var;
nd = size(kstate,1);
lead_lag_incidence = M_.lead_lag_incidence;
nz = nnz(lead_lag_incidence);
sdyn = M_.endo_nbr - nstatic;
[junk,cols_b,cols_j] = find(lead_lag_incidence(M_.maximum_endo_lag+1,...
order_var));
if nstatic > 0
[Q,R] = qr(jacobia(:,cols_j(1:nstatic)));
aa = Q'*jacobia;
else
aa = jacobia;
end
k1 = find([1:klen] ~= M_.maximum_endo_lag+1);
a = aa(:,nonzeros(lead_lag_incidence(k1,:)'));
b(:,cols_b) = aa(:,cols_j);
b10 = b(1:nstatic,1:nstatic);
b11 = b(1:nstatic,nstatic+1:end);
b2 = b(nstatic+1:end,nstatic+1:end);
if any(isinf(a(:)))
info = 1;
return
end
% buildind D and E
d = zeros(nd,nd) ;
e = d ;
k = find(kstate(:,2) >= M_.maximum_endo_lag+2 & kstate(:,3));
d(1:sdyn,k) = a(nstatic+1:end,kstate(k,3)) ;
k1 = find(kstate(:,2) == M_.maximum_endo_lag+2);
e(1:sdyn,k1) = -b2(:,kstate(k1,1)-nstatic);
k = find(kstate(:,2) <= M_.maximum_endo_lag+1 & kstate(:,4));
e(1:sdyn,k) = -a(nstatic+1:end,kstate(k,4)) ;
k2 = find(kstate(:,2) == M_.maximum_endo_lag+1);
k2 = k2(~ismember(kstate(k2,1),kstate(k1,1)));
d(1:sdyn,k2) = b2(:,kstate(k2,1)-nstatic);
if ~isempty(kad)
for j = 1:size(kad,1)
d(sdyn+j,kad(j)) = 1 ;
e(sdyn+j,kae(j)) = 1 ;
end
end
% 1) if mjdgges.dll (or .mexw32 or ....) doesn't exit,
% matlab/qz is added to the path. There exists now qz/mjdgges.m that
% contains the calls to the old Sims code
% 2) In global_initialization.m, if mjdgges.m is visible exist(...)==2,
% this means that the DLL isn't avaiable and use_qzdiv is set to 1
[err,ss,tt,w,sdim,dr.eigval,info1] = mjdgges(e,d,options.qz_criterium);
mexErrCheck('mjdgges', err);
if info1
if info1 == -30
% one eigenvalue is close to 0/0
info(1) = 7;
else
info(1) = 2;
info(2) = info1;
info(3) = size(e,2);
end
return
end
nba = nd-sdim;
nyf = sum(kstate(:,2) > M_.maximum_endo_lag+1);
if task == 1
dr.rank = rank(w(1:nyf,nd-nyf+1:end));
% Under Octave, eig(A,B) doesn't exist, and
% lambda = qz(A,B) won't return infinite eigenvalues
if ~exist('OCTAVE_VERSION')
dr.eigval = eig(e,d);
end
return
end
if nba ~= nyf
temp = sort(abs(dr.eigval));
if nba > nyf
temp = temp(nd-nba+1:nd-nyf)-1-options.qz_criterium;
info(1) = 3;
elseif nba < nyf;
temp = temp(nd-nyf+1:nd-nba)-1-options.qz_criterium;
info(1) = 4;
end
info(2) = temp'*temp;
return
end
np = nd - nyf;
n2 = np + 1;
n3 = nyf;
n4 = n3 + 1;
% derivatives with respect to dynamic state variables
% forward variables
w1 =w(1:n3,n2:nd);
if ~isscalar(w1) && (condest(w1) > 1e9);
% condest() fails on a scalar under Octave
info(1) = 5;
info(2) = condest(w1);
return;
else
gx = -w1'\w(n4:nd,n2:nd)';
end
% predetermined variables
hx = w(1:n3,1:np)'*gx+w(n4:nd,1:np)';
hx = (tt(1:np,1:np)*hx)\(ss(1:np,1:np)*hx);
k1 = find(kstate(n4:nd,2) == M_.maximum_endo_lag+1);
k2 = find(kstate(1:n3,2) == M_.maximum_endo_lag+2);
dr.gx = gx;
dr.ghx = [hx(k1,:); gx(k2(nboth+1:end),:)];
%lead variables actually present in the model
j3 = nonzeros(kstate(:,3));
j4 = find(kstate(:,3));
% derivatives with respect to exogenous variables
if M_.exo_nbr
fu = aa(:,nz+(1:M_.exo_nbr));
a1 = b;
aa1 = [];
if nstatic > 0
aa1 = a1(:,1:nstatic);
end
dr.ghu = -[aa1 a(:,j3)*gx(j4,1:npred)+a1(:,nstatic+1:nstatic+ ...
npred) a1(:,nstatic+npred+1:end)]\fu;
else
dr.ghu = [];
end
% static variables
if nstatic > 0
temp = -a(1:nstatic,j3)*gx(j4,:)*hx;
j5 = find(kstate(n4:nd,4));
temp(:,j5) = temp(:,j5)-a(1:nstatic,nonzeros(kstate(:,4)));
temp = b10\(temp-b11*dr.ghx);
dr.ghx = [temp; dr.ghx];
temp = [];
end
if options.use_qzdiv
%% Necessary when using Sims' routines for QZ
gx = real(gx);
hx = real(hx);
dr.ghx = real(dr.ghx);
dr.ghu = real(dr.ghu);
end
dr.Gy = hx;
|