File: dyn_risky_steadystate_solver.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (531 lines) | stat: -rw-r--r-- 17,388 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
function [dr,info] = dyn_risky_steadystate_solver(ys0,M, ...
                                                  dr,options,oo)

%@info:
%! @deftypefn {Function File} {[@var{dr},@var{info}] =} dyn_risky_steadystate_solver (@var{ys0},@var{M},@var{dr},@var{options},@var{oo})
%! @anchor{dyn_risky_steadystate_solver}
%! @sp 1
%! Computes the second order risky steady state and first and second order reduced form of the DSGE model.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item ys0
%! Vector containing a guess value for the risky steady state
%! @item M
%! Matlab's structure describing the model (initialized by @code{dynare}).
%! @item dr
%! Matlab's structure describing the reduced form solution of the model.
%! @item options
%! Matlab's structure describing the options (initialized by @code{dynare}).
%! @item oo
%! Matlab's structure gathering the results (initialized by @code{dynare}).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item dr
%! Matlab's structure describing the reduced form solution of the model.
%! @item info
%! Integer scalar, error code.
%! @sp 1
%! @table @ @code
%! @item info==0
%! No error.
%! @item info==1
%! The model doesn't determine the current variables uniquely.
%! @item info==2
%! MJDGGES returned an error code.
%! @item info==3
%! Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
%! @item info==4
%! Blanchard & Kahn conditions are not satisfied: indeterminacy.
%! @item info==5
%! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
%! @item info==6
%! The jacobian evaluated at the deterministic steady state is complex.
%! @item info==19
%! The steadystate routine thrown an exception (inconsistent deep parameters).
%! @item info==20
%! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations).
%! @item info==21
%! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.
%! @item info==22
%! The steady has NaNs.
%! @item info==23
%! M_.params has been updated in the steadystate routine and has complex valued scalars.
%! @item info==24
%! M_.params has been updated in the steadystate routine and has some NaNs.
%! @end table
%! @end table
%! @end deftypefn
%@eod:

% Copyright (C) 2001-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

    
    info = 0;
    lead_lag_incidence = M.lead_lag_incidence;
    order_var = dr.order_var;
    exo_nbr = M.exo_nbr;
    
    M.var_order_endo_names = M.endo_names(dr.order_var,:);
 
    [junk,dr.i_fwrd_g,i_fwrd_f] = find(lead_lag_incidence(3,order_var));
    dr.i_fwrd_f = i_fwrd_f;
    nd = nnz(lead_lag_incidence) + M.exo_nbr;
    dr.nd = nd;
    kk = reshape(1:nd^2,nd,nd);
    kkk = reshape(1:nd^3,nd^2,nd);
    dr.i_fwrd2_f = kk(i_fwrd_f,i_fwrd_f);
    dr.i_fwrd2a_f = kk(i_fwrd_f,:);
    dr.i_fwrd3_f = kkk(dr.i_fwrd2_f,:);
    dr.i_uu = kk(end-exo_nbr+1:end,end-exo_nbr+1:end);
    if options.k_order_solver
        func = @risky_residuals_k_order;
    else
        func = @risky_residuals;
    end
    
    if isfield(options,'portfolio') && options.portfolio == 1
        eq_tags = M.equations_tags;
        n_tags = size(eq_tags,1);
        l_var = zeros(n_tags,1);
        for i=1:n_tags
            l_var(i) = find(strncmp(eq_tags(i,3),M.endo_names, ...
                                    length(cell2mat(eq_tags(i,3)))));
        end
        dr.ys = ys0;
        x0 = ys0(l_var);
        %        dr = first_step_ds(x0,M,dr,options,oo);
        n = size(ys0);
        %x0 = ys0;
        [x, info] = solve1(@risky_residuals_ds,x0,1:n_tags,1:n_tags,0,1,M,dr,options,oo);
        %[x, info] = solve1(@risky_residuals,x0,1:n,1:n,0,1,M,dr,options,oo);
        %        ys0(l_var) = x;
        ys0(l_var) = x;
        dr.ys = ys0;
        oo.dr = dr;
        oo.steady_state = ys0;
        disp_steady_state(M,oo);
    end
        
    [ys, info] = csolve(func,ys0,[],1e-10,100,M,dr,options,oo);
    
    if options.k_order_solver
        [resid,dr] = risky_residuals_k_order(ys,M,dr,options,oo);
    else
        [resid,dr] = risky_residuals(ys,M,dr,options,oo);
    end
    
    dr.ys = ys;
    for i=1:M.endo_nbr
        disp(sprintf('%16s %12.6f %12.6f',M.endo_names(i,:),ys0(i), ys(i)))
    end
    
    dr.ghs2 = zeros(size(dr.ghs2));

    k_var = setdiff(1:M.endo_nbr,l_var);
    dr.ghx(k_var,:) = dr.ghx;
    dr.ghu(k_var,:) = dr.ghu;
    dr.ghxx(k_var,:) = dr.ghxx;
    dr.ghxu(k_var,:) = dr.ghxu;
    dr.ghuu(k_var,:) = dr.ghuu;
    dr.ghs2(k_var,:) = dr.ghs2;
end

function [resid,dr] = risky_residuals(ys,M,dr,options,oo)
    persistent old_ys old_resid
    
    lead_lag_incidence = M.lead_lag_incidence;
    iyv = lead_lag_incidence';
    iyv = iyv(:);
    iyr0 = find(iyv) ;
    
    if M.exo_nbr == 0
        oo.exo_steady_state = [] ;
    end
    
    z = repmat(ys,1,3);
    z = z(iyr0) ;
    [resid1,d1,d2] = feval([M.fname '_dynamic'],z,...
                                     [oo.exo_simul ...
                        oo.exo_det_simul], M.params, dr.ys, 2);
    if ~isreal(d1) || ~isreal(d2)
        pause
    end
    
    if options.use_dll
        % In USE_DLL mode, the hessian is in the 3-column sparse representation
        d2 = sparse(d2(:,1), d2(:,2), d2(:,3), ...
                         size(d1, 1), size(d1, 2)*size(d1, 2));
    end

    if isfield(options,'portfolio') && options.portfolio == 1
        eq_tags = M.equations_tags;
        n_tags = size(eq_tags,1);
        portfolios_eq = cell2mat(eq_tags(strcmp(eq_tags(:,2), ...
                                                'portfolio'),1));
        eq = setdiff(1:M.endo_nbr,portfolios_eq);
        l_var = zeros(n_tags,1);
        for i=1:n_tags
            l_var(i) = find(strncmp(eq_tags(i,3),M.endo_names, ...
                                    length(cell2mat(eq_tags(i,3)))));
        end
        k_var = setdiff(1:M.endo_nbr,l_var);
        lli1 = lead_lag_incidence(:,k_var);
        lead_incidence = lli1(3,:)';
        k = find(lli1');
        lli2 = lli1';
        lli2(k) = 1:nnz(lli1);
        lead_lag_incidence = lli2';
        x = ys(l_var);
        dr = first_step_ds(x,M,dr,options,oo);

        
        M.lead_lag_incidence = lead_lag_incidence;
        lli1a = [nonzeros(lli1'); size(d1,2)+(-M.exo_nbr+1:0)'];
        d1a = d1(eq,lli1a);
        ih = 1:size(d2,2);
        ih = reshape(ih,size(d1,2),size(d1,2));
        ih1 = ih(lli1a,lli1a);
        d2a = d2(eq,ih1);
        
        M.endo_nbr = M.endo_nbr-n_tags;
        dr = set_state_space(dr,M);
    
        [junk,dr.i_fwrd_g] = find(lead_lag_incidence(3,dr.order_var));
        i_fwrd_f = nonzeros(lead_incidence(dr.order_var));
        i_fwrd2_f = ih(i_fwrd_f,i_fwrd_f);
        dr.i_fwrd_f = i_fwrd_f;
        dr.i_fwrd2_f = i_fwrd2_f;
        nd = nnz(lead_lag_incidence) + M.exo_nbr;
        dr.nd = nd;
        kk = reshape(1:nd^2,nd,nd);
        kkk = reshape(1:nd^3,nd^2,nd);
        dr.i_fwrd2a_f = kk(i_fwrd_f,:);
        %        dr.i_fwrd3_f = kkk(i_fwrd2_f,:);
        dr.i_uu = kk(end-M.exo_nbr+1:end,end-M.exo_nbr+1:end);
    else
        d1a = d1;
        d2a = d2;
    end
    
% $$$     [junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
% $$$     b = zeros(M.endo_nbr,M.endo_nbr);
% $$$     b(:,cols_b) = d1a(:,cols_j);
% $$$ 
% $$$     [dr,info] = dyn_first_order_solver(d1a,b,M,dr,options,0);
% $$$     if info
% $$$         [m1,m2]=max(abs(ys-old_ys));
% $$$         disp([m1 m2])
% $$$         %        print_info(info,options.noprint);
% $$$         resid = old_resid+info(2)/40;
% $$$         return
% $$$     end
% $$$     
% $$$     dr = dyn_second_order_solver(d1a,d2a,dr,M);
    
    gu1 = dr.ghu(dr.i_fwrd_g,:);

    resid = resid1+0.5*(d1(:,dr.i_fwrd_f)*dr.ghuu(dr.i_fwrd_g,:)+ ...
                        d2(:,dr.i_fwrd2_f)*kron(gu1,gu1))*vec(M.Sigma_e);
    disp(d1(:,dr.i_fwrd_f)*dr.ghuu(dr.i_fwrd_g,:)*vec(M.Sigma_e));
    old_ys = ys;
    disp(max(abs(resid)))
    old_resid = resid;
end

function [resid,dr] = risky_residuals_ds(x,M,dr,options,oo)
    persistent old_ys old_resid old_resid1 old_d1 old_d2
    
    dr = first_step_ds(x,M,dr,options,oo);

    lead_lag_incidence = M.lead_lag_incidence;
    iyv = lead_lag_incidence';
    iyv = iyv(:);
    iyr0 = find(iyv) ;
    
    if M.exo_nbr == 0
        oo.exo_steady_state = [] ;
    end
    
    eq_tags = M.equations_tags;
    n_tags = size(eq_tags,1);
    portfolios_eq = cell2mat(eq_tags(strcmp(eq_tags(:,2), ...
                                            'portfolio'),1));
    eq = setdiff(1:M.endo_nbr,portfolios_eq);
    l_var = zeros(n_tags,1);
    for i=1:n_tags
        l_var(i) = find(strncmp(eq_tags(i,3),M.endo_names, ...
                                length(cell2mat(eq_tags(i,3)))));
    end
    k_var = setdiff(1:M.endo_nbr,l_var);
    lli1 = lead_lag_incidence(:,k_var);
    k = find(lli1');
    lli2 = lli1';
    lli2(k) = 1:nnz(lli1);
    lead_lag_incidence = lli2';

    ys = dr.ys;
    ys(l_var) = x;
    
    z = repmat(ys,1,3);
    z = z(iyr0) ;
    [resid1,d1,d2] = feval([M.fname '_dynamic'],z,...
                                     [oo.exo_simul ...
                        oo.exo_det_simul], M.params, dr.ys, 2);
% $$$     if isempty(old_resid)
% $$$         old_resid1 = resid1;
% $$$         old_d1 = d1;
% $$$         old_d2 = d2;
% $$$         old_ys = ys;
% $$$     else
% $$$         if ~isequal(resid1,old_resid)
% $$$             disp('ys')
% $$$             disp((ys-old_ys)');
% $$$             disp('resids1')
% $$$             disp((resid1-old_resid1)')
% $$$             old_resid1 = resid1;
% $$$             pause
% $$$         end
% $$$         if ~isequal(d1,old_d1)
% $$$             disp('d1')
% $$$             disp(d1-old_d1);
% $$$             old_d1 = d1;
% $$$             pause
% $$$         end
% $$$         if ~isequal(d2,old_d2)
% $$$             disp('d2')
% $$$             disp(d2-old_d2);
% $$$             old_d2 = d2;
% $$$             pause
% $$$         end
% $$$     end
    if ~isreal(d1) || ~isreal(d2)
        pause
    end
    
    if options.use_dll
        % In USE_DLL mode, the hessian is in the 3-column sparse representation
        d2 = sparse(d2(:,1), d2(:,2), d2(:,3), ...
                         size(d1, 1), size(d1, 2)*size(d1, 2));
    end

% $$$     if isfield(options,'portfolio') && options.portfolio == 1
% $$$         lli1a = [nonzeros(lli1'); size(d1,2)+(-M.exo_nbr+1:0)'];
% $$$         d1a = d1(eq,lli1a);
% $$$         ih = 1:size(d2,2);
% $$$         ih = reshape(ih,size(d1,2),size(d1,2));
% $$$         ih1 = ih(lli1a,lli1a);
% $$$         d2a = d2(eq,ih1);
% $$$         
% $$$         M.endo_nbr = M.endo_nbr-n_tags;
% $$$         dr = set_state_space(dr,M);
% $$$     
% $$$         dr.i_fwrd_g = find(lead_lag_incidence(3,dr.order_var)');
% $$$     else
% $$$         d1a = d1;
% $$$         d2a = d2;
% $$$     end
% $$$     
% $$$     [junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
% $$$     b = zeros(M.endo_nbr,M.endo_nbr);
% $$$     b(:,cols_b) = d1a(:,cols_j);
% $$$ 
% $$$     [dr,info] = dyn_first_order_solver(d1a,b,M,dr,options,0);
% $$$     if info
% $$$         [m1,m2]=max(abs(ys-old_ys));
% $$$         disp([m1 m2])
% $$$         %        print_info(info,options.noprint);
% $$$         resid = old_resid+info(2)/40;
% $$$         return
% $$$     end
% $$$     
% $$$     dr = dyn_second_order_solver(d1a,d2a,dr,M);
    
    gu1 = dr.ghu(dr.i_fwrd_g,:);

    %    resid = resid1+0.5*(d1(:,dr.i_fwrd_f)*dr.ghuu(dr.i_fwrd_g,:)+ ...
    %                    d2(:,dr.i_fwrd2_f)*kron(gu1,gu1))*vec(M.Sigma_e);
    resid = resid1+0.5*(d2(:,dr.i_fwrd2_f)*kron(gu1,gu1))*vec(M.Sigma_e);

% $$$     if isempty(old_resid)
% $$$         old_resid = resid;
% $$$     else
% $$$         disp('resid')
% $$$         dr = (resid-old_resid)';
% $$$         %        disp(dr)
% $$$         %        disp(dr(portfolios_eq))
% $$$         old_resid = resid;
% $$$     end
    resid = resid(portfolios_eq)
end

function [dr] = first_step_ds(x,M,dr,options,oo)
    
    lead_lag_incidence = M.lead_lag_incidence;
    iyv = lead_lag_incidence';
    iyv = iyv(:);
    iyr0 = find(iyv) ;
    
    if M.exo_nbr == 0
        oo.exo_steady_state = [] ;
    end
    
    eq_tags = M.equations_tags;
    n_tags = size(eq_tags,1);
    portfolios_eq = cell2mat(eq_tags(strcmp(eq_tags(:,2), ...
                                            'portfolio'),1));
    eq = setdiff(1:M.endo_nbr,portfolios_eq);
    l_var = zeros(n_tags,1);
    for i=1:n_tags
        l_var(i) = find(strncmp(eq_tags(i,3),M.endo_names, ...
                                length(cell2mat(eq_tags(i,3)))));
    end
    k_var = setdiff(1:M.endo_nbr,l_var);
    lli1 = lead_lag_incidence(:,k_var);
    k = find(lli1');
    lli2 = lli1';
    lli2(k) = 1:nnz(lli1);
    lead_lag_incidence = lli2';
    M.lead_lag_incidence = lead_lag_incidence;

    ys = dr.ys;
    ys(l_var) = x;
    
    z = repmat(ys,1,3);
    z = z(iyr0) ;
    [resid1,d1,d2] = feval([M.fname '_dynamic'],z,...
                                     [oo.exo_simul ...
                        oo.exo_det_simul], M.params, dr.ys, 2);
    if ~isreal(d1) || ~isreal(d2)
        pause
    end
    
    if options.use_dll
        % In USE_DLL mode, the hessian is in the 3-column sparse representation
        d2 = sparse(d2(:,1), d2(:,2), d2(:,3), ...
                         size(d1, 1), size(d1, 2)*size(d1, 2));
    end

    if isfield(options,'portfolio') && options.portfolio == 1
        lli1a = [nonzeros(lli1'); size(d1,2)+(-M.exo_nbr+1:0)'];
        d1a = d1(eq,lli1a);
        ih = 1:size(d2,2);
        ih = reshape(ih,size(d1,2),size(d1,2));
        ih1 = ih(lli1a,lli1a);
        d2a = d2(eq,ih1);
        
        M.endo_nbr = M.endo_nbr-n_tags;
        dr = set_state_space(dr,M);
    
        dr.i_fwrd_g = find(lead_lag_incidence(3,dr.order_var)');
    else
        d1a = d1;
        d2a = d2;
    end
    
    [junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
    b = zeros(M.endo_nbr,M.endo_nbr);
    b(:,cols_b) = d1a(:,cols_j);

    [dr,info] = dyn_first_order_solver(d1a,M,dr,options,0);
    if info
        [m1,m2]=max(abs(ys-old_ys));
        disp([m1 m2])
        %        print_info(info,options.noprint);
        resid = old_resid+info(2)/40;
        return
    end
    
    dr = dyn_second_order_solver(d1a,d2a,dr,M,...
                                 options.threads.kronecker.A_times_B_kronecker_C,...
                                 options.threads.kronecker.sparse_hessian_times_B_kronecker_C);
end

function [resid,dr] = risky_residuals_k_order(ys,M,dr,options,oo)
    
    lead_lag_incidence = M.lead_lag_incidence;
    npred = dr.npred;
    exo_nbr = M.exo_nbr;
    vSigma_e = vec(M.Sigma_e);
    
    iyv = lead_lag_incidence';
    iyv = iyv(:);
    iyr0 = find(iyv) ;
    
    if M.exo_nbr == 0
        oo.exo_steady_state = [] ;
    end
    
    z = repmat(ys,1,3);
    z = z(iyr0) ;
    [resid1,d1,d2,d3] = feval([M.fname '_dynamic'],z,...
                                     [oo.exo_simul ...
                        oo.exo_det_simul], M.params, dr.ys, 2);

% $$$     hessian = sparse(d2(:,1), d2(:,2), d2(:,3), ...
% $$$                      size(d1, 1), size(d1, 2)*size(d1, 2));
% $$$     fy3 = sparse(d2(:,1), d2(:,2), d2(:,3), ...
% $$$                      size(d1, 1), size(d1, 2)^3);

    options.order = 3;
    
    nu2 = exo_nbr*(exo_nbr+1)/2;
% $$$     d1_0 = d1;
% $$$     gu1 = dr.ghu(dr.i_fwrd_g,:);
% $$$     guu = dr.ghuu;
% $$$     for i=1:2
% $$$         d1 = d1_0 + 0.5*(hessian(:,dr.i_fwrd2a_f)*kron(eye(dr.nd),guu(dr.i_fwrd_g,:)*vSigma_e)+ ...
% $$$                        fy3(:,dr.i_fwrd3_f)*kron(eye(dr.nd),kron(gu1,gu1)*vSigma_e));
% $$$     [junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
% $$$     b = zeros(M.endo_nbr,M.endo_nbr);
% $$$     b(:,cols_b) = d1(:,cols_j);

% $$$     [dr,info] = dyn_first_order_solver(d1,b,M,dr,options,0);
        [err,g_0, g_1, g_2, g_3] = k_order_perturbation(dr,M,options);
        mexErrCheck('k_order_perturbation', err);
        gu1 = g_1(dr.i_fwrd_g,end-exo_nbr+1:end);
        guu = unfold(g_2(:,end-nu2+1:end),exo_nbr);
        d1old = d1;
        %        disp(max(max(abs(d1-d1old))));
        %    end
    
    [junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
    
    resid = resid1+0.5*(d1(:,dr.i_fwrd_f)*guu(dr.i_fwrd_g,:)+hessian(:,dr.i_fwrd2_f)*kron(gu1,gu1))*vec(M.Sigma_e);

    if nargout > 1
        [dr,info] = k_order_pert(dr,M,options,oo);
    end
end

function y=unfold(x,n)
    y = zeros(size(x,1),n*n);
    k = 1;
    for i=1:n
        for j=i:n
            y(:,(i-1)*n+j) = x(:,k);
            if i ~= j
                y(:,(j-1)*n+i) = x(:,k);
            end
        end
    end
end