1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
function [dr,info] = dyn_risky_steadystate_solver(ys0,M, ...
dr,options,oo)
%@info:
%! @deftypefn {Function File} {[@var{dr},@var{info}] =} dyn_risky_steadystate_solver (@var{ys0},@var{M},@var{dr},@var{options},@var{oo})
%! @anchor{dyn_risky_steadystate_solver}
%! @sp 1
%! Computes the second order risky steady state and first and second order reduced form of the DSGE model.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item ys0
%! Vector containing a guess value for the risky steady state
%! @item M
%! Matlab's structure describing the model (initialized by @code{dynare}).
%! @item dr
%! Matlab's structure describing the reduced form solution of the model.
%! @item options
%! Matlab's structure describing the options (initialized by @code{dynare}).
%! @item oo
%! Matlab's structure gathering the results (initialized by @code{dynare}).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item dr
%! Matlab's structure describing the reduced form solution of the model.
%! @item info
%! Integer scalar, error code.
%! @sp 1
%! @table @ @code
%! @item info==0
%! No error.
%! @item info==1
%! The model doesn't determine the current variables uniquely.
%! @item info==2
%! MJDGGES returned an error code.
%! @item info==3
%! Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
%! @item info==4
%! Blanchard & Kahn conditions are not satisfied: indeterminacy.
%! @item info==5
%! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
%! @item info==6
%! The jacobian evaluated at the deterministic steady state is complex.
%! @item info==19
%! The steadystate routine thrown an exception (inconsistent deep parameters).
%! @item info==20
%! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations).
%! @item info==21
%! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.
%! @item info==22
%! The steady has NaNs.
%! @item info==23
%! M_.params has been updated in the steadystate routine and has complex valued scalars.
%! @item info==24
%! M_.params has been updated in the steadystate routine and has some NaNs.
%! @end table
%! @end table
%! @end deftypefn
%@eod:
% Copyright (C) 2001-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
info = 0;
lead_lag_incidence = M.lead_lag_incidence;
order_var = dr.order_var;
exo_nbr = M.exo_nbr;
M.var_order_endo_names = M.endo_names(dr.order_var,:);
[junk,dr.i_fwrd_g,i_fwrd_f] = find(lead_lag_incidence(3,order_var));
dr.i_fwrd_f = i_fwrd_f;
nd = nnz(lead_lag_incidence) + M.exo_nbr;
dr.nd = nd;
kk = reshape(1:nd^2,nd,nd);
kkk = reshape(1:nd^3,nd^2,nd);
dr.i_fwrd2_f = kk(i_fwrd_f,i_fwrd_f);
dr.i_fwrd2a_f = kk(i_fwrd_f,:);
dr.i_fwrd3_f = kkk(dr.i_fwrd2_f,:);
dr.i_uu = kk(end-exo_nbr+1:end,end-exo_nbr+1:end);
if options.k_order_solver
func = @risky_residuals_k_order;
else
func = @risky_residuals;
end
if isfield(options,'portfolio') && options.portfolio == 1
eq_tags = M.equations_tags;
n_tags = size(eq_tags,1);
l_var = zeros(n_tags,1);
for i=1:n_tags
l_var(i) = find(strncmp(eq_tags(i,3),M.endo_names, ...
length(cell2mat(eq_tags(i,3)))));
end
dr.ys = ys0;
x0 = ys0(l_var);
% dr = first_step_ds(x0,M,dr,options,oo);
n = size(ys0);
%x0 = ys0;
[x, info] = solve1(@risky_residuals_ds,x0,1:n_tags,1:n_tags,0,1,M,dr,options,oo);
%[x, info] = solve1(@risky_residuals,x0,1:n,1:n,0,1,M,dr,options,oo);
% ys0(l_var) = x;
ys0(l_var) = x;
dr.ys = ys0;
oo.dr = dr;
oo.steady_state = ys0;
disp_steady_state(M,oo);
end
[ys, info] = csolve(func,ys0,[],1e-10,100,M,dr,options,oo);
if options.k_order_solver
[resid,dr] = risky_residuals_k_order(ys,M,dr,options,oo);
else
[resid,dr] = risky_residuals(ys,M,dr,options,oo);
end
dr.ys = ys;
for i=1:M.endo_nbr
disp(sprintf('%16s %12.6f %12.6f',M.endo_names(i,:),ys0(i), ys(i)))
end
dr.ghs2 = zeros(size(dr.ghs2));
k_var = setdiff(1:M.endo_nbr,l_var);
dr.ghx(k_var,:) = dr.ghx;
dr.ghu(k_var,:) = dr.ghu;
dr.ghxx(k_var,:) = dr.ghxx;
dr.ghxu(k_var,:) = dr.ghxu;
dr.ghuu(k_var,:) = dr.ghuu;
dr.ghs2(k_var,:) = dr.ghs2;
end
function [resid,dr] = risky_residuals(ys,M,dr,options,oo)
persistent old_ys old_resid
lead_lag_incidence = M.lead_lag_incidence;
iyv = lead_lag_incidence';
iyv = iyv(:);
iyr0 = find(iyv) ;
if M.exo_nbr == 0
oo.exo_steady_state = [] ;
end
z = repmat(ys,1,3);
z = z(iyr0) ;
[resid1,d1,d2] = feval([M.fname '_dynamic'],z,...
[oo.exo_simul ...
oo.exo_det_simul], M.params, dr.ys, 2);
if ~isreal(d1) || ~isreal(d2)
pause
end
if options.use_dll
% In USE_DLL mode, the hessian is in the 3-column sparse representation
d2 = sparse(d2(:,1), d2(:,2), d2(:,3), ...
size(d1, 1), size(d1, 2)*size(d1, 2));
end
if isfield(options,'portfolio') && options.portfolio == 1
eq_tags = M.equations_tags;
n_tags = size(eq_tags,1);
portfolios_eq = cell2mat(eq_tags(strcmp(eq_tags(:,2), ...
'portfolio'),1));
eq = setdiff(1:M.endo_nbr,portfolios_eq);
l_var = zeros(n_tags,1);
for i=1:n_tags
l_var(i) = find(strncmp(eq_tags(i,3),M.endo_names, ...
length(cell2mat(eq_tags(i,3)))));
end
k_var = setdiff(1:M.endo_nbr,l_var);
lli1 = lead_lag_incidence(:,k_var);
lead_incidence = lli1(3,:)';
k = find(lli1');
lli2 = lli1';
lli2(k) = 1:nnz(lli1);
lead_lag_incidence = lli2';
x = ys(l_var);
dr = first_step_ds(x,M,dr,options,oo);
M.lead_lag_incidence = lead_lag_incidence;
lli1a = [nonzeros(lli1'); size(d1,2)+(-M.exo_nbr+1:0)'];
d1a = d1(eq,lli1a);
ih = 1:size(d2,2);
ih = reshape(ih,size(d1,2),size(d1,2));
ih1 = ih(lli1a,lli1a);
d2a = d2(eq,ih1);
M.endo_nbr = M.endo_nbr-n_tags;
dr = set_state_space(dr,M);
[junk,dr.i_fwrd_g] = find(lead_lag_incidence(3,dr.order_var));
i_fwrd_f = nonzeros(lead_incidence(dr.order_var));
i_fwrd2_f = ih(i_fwrd_f,i_fwrd_f);
dr.i_fwrd_f = i_fwrd_f;
dr.i_fwrd2_f = i_fwrd2_f;
nd = nnz(lead_lag_incidence) + M.exo_nbr;
dr.nd = nd;
kk = reshape(1:nd^2,nd,nd);
kkk = reshape(1:nd^3,nd^2,nd);
dr.i_fwrd2a_f = kk(i_fwrd_f,:);
% dr.i_fwrd3_f = kkk(i_fwrd2_f,:);
dr.i_uu = kk(end-M.exo_nbr+1:end,end-M.exo_nbr+1:end);
else
d1a = d1;
d2a = d2;
end
% $$$ [junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
% $$$ b = zeros(M.endo_nbr,M.endo_nbr);
% $$$ b(:,cols_b) = d1a(:,cols_j);
% $$$
% $$$ [dr,info] = dyn_first_order_solver(d1a,b,M,dr,options,0);
% $$$ if info
% $$$ [m1,m2]=max(abs(ys-old_ys));
% $$$ disp([m1 m2])
% $$$ % print_info(info,options.noprint);
% $$$ resid = old_resid+info(2)/40;
% $$$ return
% $$$ end
% $$$
% $$$ dr = dyn_second_order_solver(d1a,d2a,dr,M);
gu1 = dr.ghu(dr.i_fwrd_g,:);
resid = resid1+0.5*(d1(:,dr.i_fwrd_f)*dr.ghuu(dr.i_fwrd_g,:)+ ...
d2(:,dr.i_fwrd2_f)*kron(gu1,gu1))*vec(M.Sigma_e);
disp(d1(:,dr.i_fwrd_f)*dr.ghuu(dr.i_fwrd_g,:)*vec(M.Sigma_e));
old_ys = ys;
disp(max(abs(resid)))
old_resid = resid;
end
function [resid,dr] = risky_residuals_ds(x,M,dr,options,oo)
persistent old_ys old_resid old_resid1 old_d1 old_d2
dr = first_step_ds(x,M,dr,options,oo);
lead_lag_incidence = M.lead_lag_incidence;
iyv = lead_lag_incidence';
iyv = iyv(:);
iyr0 = find(iyv) ;
if M.exo_nbr == 0
oo.exo_steady_state = [] ;
end
eq_tags = M.equations_tags;
n_tags = size(eq_tags,1);
portfolios_eq = cell2mat(eq_tags(strcmp(eq_tags(:,2), ...
'portfolio'),1));
eq = setdiff(1:M.endo_nbr,portfolios_eq);
l_var = zeros(n_tags,1);
for i=1:n_tags
l_var(i) = find(strncmp(eq_tags(i,3),M.endo_names, ...
length(cell2mat(eq_tags(i,3)))));
end
k_var = setdiff(1:M.endo_nbr,l_var);
lli1 = lead_lag_incidence(:,k_var);
k = find(lli1');
lli2 = lli1';
lli2(k) = 1:nnz(lli1);
lead_lag_incidence = lli2';
ys = dr.ys;
ys(l_var) = x;
z = repmat(ys,1,3);
z = z(iyr0) ;
[resid1,d1,d2] = feval([M.fname '_dynamic'],z,...
[oo.exo_simul ...
oo.exo_det_simul], M.params, dr.ys, 2);
% $$$ if isempty(old_resid)
% $$$ old_resid1 = resid1;
% $$$ old_d1 = d1;
% $$$ old_d2 = d2;
% $$$ old_ys = ys;
% $$$ else
% $$$ if ~isequal(resid1,old_resid)
% $$$ disp('ys')
% $$$ disp((ys-old_ys)');
% $$$ disp('resids1')
% $$$ disp((resid1-old_resid1)')
% $$$ old_resid1 = resid1;
% $$$ pause
% $$$ end
% $$$ if ~isequal(d1,old_d1)
% $$$ disp('d1')
% $$$ disp(d1-old_d1);
% $$$ old_d1 = d1;
% $$$ pause
% $$$ end
% $$$ if ~isequal(d2,old_d2)
% $$$ disp('d2')
% $$$ disp(d2-old_d2);
% $$$ old_d2 = d2;
% $$$ pause
% $$$ end
% $$$ end
if ~isreal(d1) || ~isreal(d2)
pause
end
if options.use_dll
% In USE_DLL mode, the hessian is in the 3-column sparse representation
d2 = sparse(d2(:,1), d2(:,2), d2(:,3), ...
size(d1, 1), size(d1, 2)*size(d1, 2));
end
% $$$ if isfield(options,'portfolio') && options.portfolio == 1
% $$$ lli1a = [nonzeros(lli1'); size(d1,2)+(-M.exo_nbr+1:0)'];
% $$$ d1a = d1(eq,lli1a);
% $$$ ih = 1:size(d2,2);
% $$$ ih = reshape(ih,size(d1,2),size(d1,2));
% $$$ ih1 = ih(lli1a,lli1a);
% $$$ d2a = d2(eq,ih1);
% $$$
% $$$ M.endo_nbr = M.endo_nbr-n_tags;
% $$$ dr = set_state_space(dr,M);
% $$$
% $$$ dr.i_fwrd_g = find(lead_lag_incidence(3,dr.order_var)');
% $$$ else
% $$$ d1a = d1;
% $$$ d2a = d2;
% $$$ end
% $$$
% $$$ [junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
% $$$ b = zeros(M.endo_nbr,M.endo_nbr);
% $$$ b(:,cols_b) = d1a(:,cols_j);
% $$$
% $$$ [dr,info] = dyn_first_order_solver(d1a,b,M,dr,options,0);
% $$$ if info
% $$$ [m1,m2]=max(abs(ys-old_ys));
% $$$ disp([m1 m2])
% $$$ % print_info(info,options.noprint);
% $$$ resid = old_resid+info(2)/40;
% $$$ return
% $$$ end
% $$$
% $$$ dr = dyn_second_order_solver(d1a,d2a,dr,M);
gu1 = dr.ghu(dr.i_fwrd_g,:);
% resid = resid1+0.5*(d1(:,dr.i_fwrd_f)*dr.ghuu(dr.i_fwrd_g,:)+ ...
% d2(:,dr.i_fwrd2_f)*kron(gu1,gu1))*vec(M.Sigma_e);
resid = resid1+0.5*(d2(:,dr.i_fwrd2_f)*kron(gu1,gu1))*vec(M.Sigma_e);
% $$$ if isempty(old_resid)
% $$$ old_resid = resid;
% $$$ else
% $$$ disp('resid')
% $$$ dr = (resid-old_resid)';
% $$$ % disp(dr)
% $$$ % disp(dr(portfolios_eq))
% $$$ old_resid = resid;
% $$$ end
resid = resid(portfolios_eq)
end
function [dr] = first_step_ds(x,M,dr,options,oo)
lead_lag_incidence = M.lead_lag_incidence;
iyv = lead_lag_incidence';
iyv = iyv(:);
iyr0 = find(iyv) ;
if M.exo_nbr == 0
oo.exo_steady_state = [] ;
end
eq_tags = M.equations_tags;
n_tags = size(eq_tags,1);
portfolios_eq = cell2mat(eq_tags(strcmp(eq_tags(:,2), ...
'portfolio'),1));
eq = setdiff(1:M.endo_nbr,portfolios_eq);
l_var = zeros(n_tags,1);
for i=1:n_tags
l_var(i) = find(strncmp(eq_tags(i,3),M.endo_names, ...
length(cell2mat(eq_tags(i,3)))));
end
k_var = setdiff(1:M.endo_nbr,l_var);
lli1 = lead_lag_incidence(:,k_var);
k = find(lli1');
lli2 = lli1';
lli2(k) = 1:nnz(lli1);
lead_lag_incidence = lli2';
M.lead_lag_incidence = lead_lag_incidence;
ys = dr.ys;
ys(l_var) = x;
z = repmat(ys,1,3);
z = z(iyr0) ;
[resid1,d1,d2] = feval([M.fname '_dynamic'],z,...
[oo.exo_simul ...
oo.exo_det_simul], M.params, dr.ys, 2);
if ~isreal(d1) || ~isreal(d2)
pause
end
if options.use_dll
% In USE_DLL mode, the hessian is in the 3-column sparse representation
d2 = sparse(d2(:,1), d2(:,2), d2(:,3), ...
size(d1, 1), size(d1, 2)*size(d1, 2));
end
if isfield(options,'portfolio') && options.portfolio == 1
lli1a = [nonzeros(lli1'); size(d1,2)+(-M.exo_nbr+1:0)'];
d1a = d1(eq,lli1a);
ih = 1:size(d2,2);
ih = reshape(ih,size(d1,2),size(d1,2));
ih1 = ih(lli1a,lli1a);
d2a = d2(eq,ih1);
M.endo_nbr = M.endo_nbr-n_tags;
dr = set_state_space(dr,M);
dr.i_fwrd_g = find(lead_lag_incidence(3,dr.order_var)');
else
d1a = d1;
d2a = d2;
end
[junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
b = zeros(M.endo_nbr,M.endo_nbr);
b(:,cols_b) = d1a(:,cols_j);
[dr,info] = dyn_first_order_solver(d1a,M,dr,options,0);
if info
[m1,m2]=max(abs(ys-old_ys));
disp([m1 m2])
% print_info(info,options.noprint);
resid = old_resid+info(2)/40;
return
end
dr = dyn_second_order_solver(d1a,d2a,dr,M,...
options.threads.kronecker.A_times_B_kronecker_C,...
options.threads.kronecker.sparse_hessian_times_B_kronecker_C);
end
function [resid,dr] = risky_residuals_k_order(ys,M,dr,options,oo)
lead_lag_incidence = M.lead_lag_incidence;
npred = dr.npred;
exo_nbr = M.exo_nbr;
vSigma_e = vec(M.Sigma_e);
iyv = lead_lag_incidence';
iyv = iyv(:);
iyr0 = find(iyv) ;
if M.exo_nbr == 0
oo.exo_steady_state = [] ;
end
z = repmat(ys,1,3);
z = z(iyr0) ;
[resid1,d1,d2,d3] = feval([M.fname '_dynamic'],z,...
[oo.exo_simul ...
oo.exo_det_simul], M.params, dr.ys, 2);
% $$$ hessian = sparse(d2(:,1), d2(:,2), d2(:,3), ...
% $$$ size(d1, 1), size(d1, 2)*size(d1, 2));
% $$$ fy3 = sparse(d2(:,1), d2(:,2), d2(:,3), ...
% $$$ size(d1, 1), size(d1, 2)^3);
options.order = 3;
nu2 = exo_nbr*(exo_nbr+1)/2;
% $$$ d1_0 = d1;
% $$$ gu1 = dr.ghu(dr.i_fwrd_g,:);
% $$$ guu = dr.ghuu;
% $$$ for i=1:2
% $$$ d1 = d1_0 + 0.5*(hessian(:,dr.i_fwrd2a_f)*kron(eye(dr.nd),guu(dr.i_fwrd_g,:)*vSigma_e)+ ...
% $$$ fy3(:,dr.i_fwrd3_f)*kron(eye(dr.nd),kron(gu1,gu1)*vSigma_e));
% $$$ [junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
% $$$ b = zeros(M.endo_nbr,M.endo_nbr);
% $$$ b(:,cols_b) = d1(:,cols_j);
% $$$ [dr,info] = dyn_first_order_solver(d1,b,M,dr,options,0);
[err,g_0, g_1, g_2, g_3] = k_order_perturbation(dr,M,options);
mexErrCheck('k_order_perturbation', err);
gu1 = g_1(dr.i_fwrd_g,end-exo_nbr+1:end);
guu = unfold(g_2(:,end-nu2+1:end),exo_nbr);
d1old = d1;
% disp(max(max(abs(d1-d1old))));
% end
[junk,cols_b,cols_j] = find(lead_lag_incidence(2,dr.order_var));
resid = resid1+0.5*(d1(:,dr.i_fwrd_f)*guu(dr.i_fwrd_g,:)+hessian(:,dr.i_fwrd2_f)*kron(gu1,gu1))*vec(M.Sigma_e);
if nargout > 1
[dr,info] = k_order_pert(dr,M,options,oo);
end
end
function y=unfold(x,n)
y = zeros(size(x,1),n*n);
k = 1;
for i=1:n
for j=i:n
y(:,(i-1)*n+j) = x(:,k);
if i ~= j
y(:,(j-1)*n+i) = x(:,k);
end
end
end
end
|