1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
function dynare_estimation(var_list,dname)
% function dynare_estimation(var_list)
% runs the estimation of the model
%
% INPUTS
% var_list: selected endogenous variables vector
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2003-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global options_ oo_ M_ oo_recursive_
%% Decide if a DSGE or DSGE-VAR has to be estimated.
if ~isempty(strmatch('dsge_prior_weight',M_.param_names))
options_.dsge_var = 1;
end
var_list = check_list_of_variables(options_, M_, var_list);
options_.varlist = var_list;
if isfield(options_,'nobs')
nobs = options_.nobs;
else
nobs = [];
end
nnobs = length(nobs);
horizon = options_.forecast;
if nargin<2 || ~exist(dname) || isempty(dname)
dname = M_.fname;
end
M_.dname = dname;
if options_.mode_compute && options_.analytic_derivation,
analytic_derivation0=options_.analytic_derivation;
options_.analytic_derivation=1;
end
if nnobs > 1
for i=1:nnobs
options_.nobs = nobs(i);
M_.dname = [dname '_' int2str(nobs(i))];
dynare_estimation_1(var_list,M_.dname);
oo_recursive_{nobs(i)} = oo_;
end
else
dynare_estimation_1(var_list,dname);
end
if options_.mode_compute && options_.analytic_derivation,
options_.analytic_derivation=analytic_derivation0;
end
if nnobs > 1 && horizon > 0
mh_replic = options_.mh_replic;
rawdata = read_variables(options_.datafile,options_.varobs,[],options_.xls_sheet,options_.xls_range);
gend = options_.nobs;
rawdata = rawdata(options_.first_obs:options_.first_obs+gend-1,:);
% Take the log of the variables if needed
if options_.loglinear && ~options_.logdata % and if the data are not in logs, then...
rawdata = log(rawdata);
end
endo_names = M_.endo_names;
n_varobs = size(options_.varobs,1);
if isempty(var_list)
var_list = endo_names;
nvar = size(endo_names,1);
SelecVariables = transpose(1:nvar);
else
nvar = size(var_list,1);
SelecVariables = [];
for i=1:nvar
if ~isempty(strmatch(var_list(i,:),endo_names,'exact'))
SelecVariables = [SelecVariables;strmatch(var_list(i,:),endo_names, ...
'exact')];
else
error(['Estimation: ' var_list(i,:) ' isn''t an endogenous' ...
'variable'])
end
end
end
IdObs = zeros(n_varobs,1);
for j=1:n_varobs
for i=1:nvar
iobs = strmatch(options_.varobs(j,:),var_list,'exact');
end
if ~isempty(iobs)
IdObs(j,1) = iobs;
end
end
k = 3+min(nobs(end)-nobs(1)+horizon, ...
size(rawdata,1)-nobs(1));
data2 = rawdata(end-k+1:end,:);
[nbplt,nr,nc,lr,lc,nstar] = pltorg(nvar);
m = 1;
for i = 1:size(var_list,1)
if mod(i,nstar) == 1
hfig = dyn_figure(options_,'Name','Out of sample forecasts');
m = 1;
end
subplot(nr,nc,m)
hold on
if any(i==IdObs)
k2 = find(i==IdObs);
if options_.loglinear == 1
plot(1:k,exp(data2(end-k+1:end,k2))','-k','linewidth',2);
else
plot(1:k,data2(end-k+1:end,k2)','-k','linewidth',2);
end
offsetx = 3;
else
offsetx = 0;
end
vname = deblank(var_list(i,:));
maxlag = M_.maximum_lag;
for j=1:nnobs
if mh_replic > 0
eval(['oo_.RecursiveForecast.Mean.' vname '(j,:) =' ...
'oo_recursive_{' int2str(nobs(j)) '}.MeanForecast.Mean.' ...
vname '(maxlag+1:end);']);
eval(['oo_.RecursiveForecast.HPDinf.' vname '(j,:) =' ...
'oo_recursive_{' int2str(nobs(j)) '}.MeanForecast.HPDinf.' ...
vname '(maxlag+1:end);']);
eval(['oo_.RecursiveForecast.HPDsup.' vname '(j,:) =' ...
'oo_recursive_{' int2str(nobs(j)) '}.MeanForecast.HPDsup.' ...
vname '(maxlag+1:end);']);
eval(['oo_.RecursiveForecast.HPDTotalinf.' vname '(j,:) =' ...
'oo_recursive_{' int2str(nobs(j)) '}.PointForecast.HPDinf.' ...
vname '(maxlag+1:end);']);
eval(['oo_.RecursiveForecast.HPDTotalsup.' vname '(j,:) =' ...
'oo_recursive_{' int2str(nobs(j)) '}.PointForecast.HPDsup.' ...
vname '(maxlag+1:end);']);
else
eval(['oo_.RecursiveForecast.Mean.' vname '(j,:) =' ...
'oo_recursive_{' int2str(nobs(j)) '}.forecast.Mean.' ...
vname ';']);
eval(['oo_.RecursiveForecast.HPDinf.' vname '(j,:) =' ...
'oo_recursive_{' int2str(nobs(j)) '}.forecast.HPDinf.' ...
vname ';']);
eval(['oo_.RecursiveForecast.HPDsup.' vname '(j,:) =' ...
'oo_recursive_{' int2str(nobs(j)) '}.forecast.HPDsup.' ...
vname ';']);
end
x = offsetx+nobs(j)-nobs(1)+(1:horizon);
y = eval(['oo_.RecursiveForecast.Mean.' vname '(j,:)']);
y1 = eval(['oo_.RecursiveForecast.HPDinf.' vname '(j,:)']);
y2 = eval(['oo_.RecursiveForecast.HPDsup.' vname '(j,:)']);
plot(x,y,'-b','linewidth',2)
plot(x,y1,'--g', ...
'linewidth',1.5)
plot(x,y2,'--g', ...
'linewidth',1.5)
if mh_replic
y3 = eval(['oo_.RecursiveForecast.HPDTotalinf.' vname '(j,:)']);
y4 = eval(['oo_.RecursiveForecast.HPDTotalsup.' vname ...
'(j,:)']);
plot(x,y3,'--r', ...
'linewidth',1.5)
plot(x,y4,'--r','linewidth',1.5)
end
end
% set(gca,'XTick',offsetx+[1 10 20 30 40 50 60 70 80 90]);
% set(gca,'XTickLabel',{'1';'10';'20';'30';'40';'50';'60';'70';'80';'90'});
% xlim([1 options_.forecast+10]);
if any(k==IdObs)
plot([offsetx+1 offsetx+1],ylim,'-c')
end
box on
title(vname,'Interpreter','none')
hold off
m = m + 1;
end
end
|