File: dynare_estimation.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (200 lines) | stat: -rw-r--r-- 7,049 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
function dynare_estimation(var_list,dname)
% function dynare_estimation(var_list)
% runs the estimation of the model
%
% INPUTS
%   var_list:  selected endogenous variables vector
%
% OUTPUTS
%   none
%
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2003-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global options_ oo_ M_ oo_recursive_

%% Decide if a DSGE or DSGE-VAR has to be estimated.
if ~isempty(strmatch('dsge_prior_weight',M_.param_names))
    options_.dsge_var = 1;
end

var_list = check_list_of_variables(options_, M_, var_list);
options_.varlist = var_list;

if isfield(options_,'nobs')
    nobs = options_.nobs;
else
    nobs = [];
end

nnobs = length(nobs);
horizon = options_.forecast;

if nargin<2 || ~exist(dname) || isempty(dname)
    dname = M_.fname;
end

M_.dname = dname;

if options_.mode_compute && options_.analytic_derivation,
    analytic_derivation0=options_.analytic_derivation;
    options_.analytic_derivation=1;
end
    

if nnobs > 1
    for i=1:nnobs
        options_.nobs = nobs(i);
        M_.dname = [dname '_' int2str(nobs(i))];
        dynare_estimation_1(var_list,M_.dname);
        oo_recursive_{nobs(i)} = oo_;
    end
else
    dynare_estimation_1(var_list,dname);
end

if options_.mode_compute && options_.analytic_derivation,
    options_.analytic_derivation=analytic_derivation0;
end

if nnobs > 1 && horizon > 0
    mh_replic = options_.mh_replic;
    rawdata = read_variables(options_.datafile,options_.varobs,[],options_.xls_sheet,options_.xls_range);
    gend = options_.nobs;
    rawdata = rawdata(options_.first_obs:options_.first_obs+gend-1,:);
    % Take the log of the variables if needed
    if options_.loglinear && ~options_.logdata   % and if the data are not in logs, then...
        rawdata = log(rawdata);
    end

    endo_names = M_.endo_names;
    n_varobs = size(options_.varobs,1);

    if isempty(var_list)
        var_list = endo_names;
        nvar    = size(endo_names,1);
        SelecVariables = transpose(1:nvar);
    else
        nvar = size(var_list,1);
        SelecVariables = [];
        for i=1:nvar
            if ~isempty(strmatch(var_list(i,:),endo_names,'exact'))
                SelecVariables = [SelecVariables;strmatch(var_list(i,:),endo_names, ...
                                                          'exact')];
            else
                error(['Estimation: ' var_list(i,:) ' isn''t an endogenous' ...
                       'variable'])
            end
        end
    end

    IdObs    = zeros(n_varobs,1);
    for j=1:n_varobs
        for i=1:nvar
            iobs = strmatch(options_.varobs(j,:),var_list,'exact');
        end
        if ~isempty(iobs)
            IdObs(j,1) = iobs;
        end
    end

    k = 3+min(nobs(end)-nobs(1)+horizon, ...
              size(rawdata,1)-nobs(1));
    data2 = rawdata(end-k+1:end,:);
    [nbplt,nr,nc,lr,lc,nstar] = pltorg(nvar);
    m = 1;
    for i = 1:size(var_list,1)
        if mod(i,nstar) == 1
            hfig = dyn_figure(options_,'Name','Out of sample forecasts');
            m = 1;
        end
        subplot(nr,nc,m)
        hold on
        if any(i==IdObs)
            k2 = find(i==IdObs);
            if options_.loglinear == 1
                plot(1:k,exp(data2(end-k+1:end,k2))','-k','linewidth',2);
            else
                plot(1:k,data2(end-k+1:end,k2)','-k','linewidth',2);
            end
            offsetx = 3;
        else
            offsetx = 0;
        end
        vname = deblank(var_list(i,:));
        maxlag = M_.maximum_lag;
        for j=1:nnobs
            if mh_replic > 0
                eval(['oo_.RecursiveForecast.Mean.' vname '(j,:) =' ...
                      'oo_recursive_{' int2str(nobs(j))  '}.MeanForecast.Mean.' ...
                      vname '(maxlag+1:end);']);
                eval(['oo_.RecursiveForecast.HPDinf.' vname '(j,:) =' ...
                      'oo_recursive_{' int2str(nobs(j))  '}.MeanForecast.HPDinf.' ...
                      vname '(maxlag+1:end);']);
                eval(['oo_.RecursiveForecast.HPDsup.' vname '(j,:) =' ...
                      'oo_recursive_{' int2str(nobs(j))  '}.MeanForecast.HPDsup.' ...
                      vname '(maxlag+1:end);']);
                eval(['oo_.RecursiveForecast.HPDTotalinf.' vname '(j,:) =' ...
                      'oo_recursive_{' int2str(nobs(j))  '}.PointForecast.HPDinf.' ...
                      vname '(maxlag+1:end);']);
                eval(['oo_.RecursiveForecast.HPDTotalsup.' vname '(j,:) =' ...
                      'oo_recursive_{' int2str(nobs(j))  '}.PointForecast.HPDsup.' ...
                      vname '(maxlag+1:end);']);
            else
                eval(['oo_.RecursiveForecast.Mean.' vname '(j,:) =' ...
                      'oo_recursive_{' int2str(nobs(j))  '}.forecast.Mean.' ...
                      vname ';']);
                eval(['oo_.RecursiveForecast.HPDinf.' vname '(j,:) =' ...
                      'oo_recursive_{' int2str(nobs(j))  '}.forecast.HPDinf.' ...
                      vname ';']);
                eval(['oo_.RecursiveForecast.HPDsup.' vname '(j,:) =' ...
                      'oo_recursive_{' int2str(nobs(j))  '}.forecast.HPDsup.' ...
                      vname ';']);
            end
            x = offsetx+nobs(j)-nobs(1)+(1:horizon);
            y = eval(['oo_.RecursiveForecast.Mean.' vname '(j,:)']);
            y1 = eval(['oo_.RecursiveForecast.HPDinf.' vname '(j,:)']);
            y2 = eval(['oo_.RecursiveForecast.HPDsup.' vname '(j,:)']);
            plot(x,y,'-b','linewidth',2)
            plot(x,y1,'--g', ...
                 'linewidth',1.5)
            plot(x,y2,'--g', ...
                 'linewidth',1.5)
            if mh_replic
                y3 = eval(['oo_.RecursiveForecast.HPDTotalinf.' vname '(j,:)']);
                y4 = eval(['oo_.RecursiveForecast.HPDTotalsup.' vname ...
                           '(j,:)']);
                plot(x,y3,'--r', ...
                     'linewidth',1.5)
                plot(x,y4,'--r','linewidth',1.5)
            end
        end
        %    set(gca,'XTick',offsetx+[1 10 20 30 40 50 60 70 80 90]);
        %    set(gca,'XTickLabel',{'1';'10';'20';'30';'40';'50';'60';'70';'80';'90'});
        %   xlim([1 options_.forecast+10]);
        if any(k==IdObs)
            plot([offsetx+1 offsetx+1],ylim,'-c')
        end
        box on
        title(vname,'Interpreter','none')
        hold off
        m = m + 1;
    end
end