File: dynare_estimation_1.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (1171 lines) | stat: -rw-r--r-- 52,248 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
function dynare_estimation_1(var_list_,dname)
% function dynare_estimation_1(var_list_,dname)
% runs the estimation of the model
%
% INPUTS
%   var_list_:  selected endogenous variables vector
%   dname:      alternative directory name
%
% OUTPUTS
%   none
%
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2003-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ options_ oo_ estim_params_ bayestopt_ dataset_

% Set particle filter flag.
if options_.order > 1
    if options_.particle.status && options_.order==2
        disp(' ')
        disp('Estimation using a non linear filter!')
        disp(' ')
    elseif options_.particle.status && options_.order>2
        error(['Non linear filter are not implemented with order ' int2str(options_.order) ' approximation of the model!'])
    elseif ~options_.particle.status && options_.order==2
        error('For estimating the model with a second order approximation using a non linear filter, one should have options_.particle.status=1;')
    else
        error(['Cannot estimate a model with an order ' int2str(options_.order) ' approximation!'])
    end
end

if ~options_.dsge_var
    if options_.particle.status
        objective_function = str2func('non_linear_dsge_likelihood');
    else
        objective_function = str2func('dsge_likelihood');
    end
else
    objective_function = str2func('DsgeVarLikelihood');
end

[dataset_,xparam1, M_, options_, oo_, estim_params_,bayestopt_] = dynare_estimation_init(var_list_, dname, [], M_, options_, oo_, estim_params_, bayestopt_);

% Set sigma_e_is_diagonal flag (needed if the shocks block is not declared in the mod file).
M_.sigma_e_is_diagonal = 1;
if estim_params_.ncx || ~isequal(nnz(M_.Sigma_e),length(M_.Sigma_e))
    M_.sigma_e_is_diagonal = 0;
end

% Set the correlation matrix if necessary.
if ~isequal(estim_params_.ncx,nnz(tril(M_.Sigma_e,-1)))
    M_.Correlation_matrix = diag(1./sqrt(diag(M_.Sigma_e)))*M_.Sigma_e*diag(1./sqrt(diag(M_.Sigma_e)));
    % Remove NaNs appearing because of variances calibrated to zero.
    if any(isnan(M_.Correlation_matrix))
        zero_variance_idx = find(~diag(M_.Sigma_e));
        for i=1:length(zero_variance_idx)
            M_.Correlation_matrix(zero_variance_idx(i),:) = 0;
            M_.Correlation_matrix(:,zero_variance_idx(i)) = 0;
        end
    end
end

data = dataset_.data;
rawdata = dataset_.rawdata;
data_index = dataset_.missing.aindex;
missing_value = dataset_.missing.state;

% Set number of observations
gend = options_.nobs;
% Set the number of observed variables.
n_varobs = size(options_.varobs,1);
% Get the number of parameters to be estimated.
nvx = estim_params_.nvx;  % Variance of the structural innovations (number of parameters).
nvn = estim_params_.nvn;  % Variance of the measurement innovations (number of parameters).
ncx = estim_params_.ncx;  % Covariance of the structural innovations (number of parameters).
ncn = estim_params_.ncn;  % Covariance of the measurement innovations (number of parameters).
np  = estim_params_.np ;  % Number of deep parameters.
nx  = nvx+nvn+ncx+ncn+np; % Total number of parameters to be estimated.
%% Set the names of the priors.
pnames = ['     ';'beta ';'gamm ';'norm ';'invg ';'unif ';'invg2'];
%% Set parameters bounds
lb = bayestopt_.lb;
ub = bayestopt_.ub;

dr = oo_.dr;

%% load mode file is necessary
if ~isempty(options_.mode_file) && ~options_.mh_posterior_mode_estimation
    load(options_.mode_file);
end

if ~isempty(estim_params_)
    set_parameters(xparam1);
end

% compute sample moments if needed (bvar-dsge)
if options_.dsge_var
    if dataset_.missing.state
        error('I cannot estimate a DSGE-VAR model with missing observations!')
    end
    if options_.noconstant
        evalin('base',...
               ['[mYY,mXY,mYX,mXX,Ydata,Xdata] = ' ...
                'var_sample_moments(options_.first_obs,' ...
                'options_.first_obs+options_.nobs-1,options_.dsge_varlag,-1,' ...
                'options_.datafile, options_.varobs,options_.xls_sheet,options_.xls_range);'])
    else% The steady state is non zero ==> a constant in the VAR is needed!
        evalin('base',['[mYY,mXY,mYX,mXX,Ydata,Xdata] = ' ...
                       'var_sample_moments(options_.first_obs,' ...
                       'options_.first_obs+options_.nobs-1,options_.dsge_varlag,0,' ...
                       'options_.datafile, options_.varobs,options_.xls_sheet,options_.xls_range);'])
    end
end


oo_ = initial_estimation_checks(objective_function,xparam1,dataset_,M_,estim_params_,options_,bayestopt_,oo_);

if isequal(options_.mode_compute,0) && isempty(options_.mode_file) && options_.mh_posterior_mode_estimation==0
    if options_.smoother == 1
        [atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp] = DsgeSmoother(xparam1,gend,data,data_index,missing_value);
        oo_.Smoother.SteadyState = ys;
        oo_.Smoother.TrendCoeffs = trend_coeff;
        if options_.filter_covariance
            oo_.Smoother.variance = P;
        end
        i_endo = bayestopt_.smoother_saved_var_list;
        if options_.nk ~= 0
            oo_.FilteredVariablesKStepAhead = ...
                aK(options_.filter_step_ahead,i_endo,:);
            if ~isempty(PK)
                oo_.FilteredVariablesKStepAheadVariances = ...
                    PK(options_.filter_step_ahead,i_endo,i_endo,:);
            end
            if ~isempty(decomp)
                oo_.FilteredVariablesShockDecomposition = ...
                    decomp(options_.filter_step_ahead,i_endo,:,:);
            end
        end
        for i=bayestopt_.smoother_saved_var_list'
            i1 = dr.order_var(bayestopt_.smoother_var_list(i));
            eval(['oo_.SmoothedVariables.' deblank(M_.endo_names(i1,:)) ...
                  ' = atT(i,:)'';']);
            if options_.nk > 0
                eval(['oo_.FilteredVariables.' deblank(M_.endo_names(i1,:)) ...
                      ' = squeeze(aK(1,i,:));']);
            end
            eval(['oo_.UpdatedVariables.' deblank(M_.endo_names(i1,:)) ' = updated_variables(i,:)'';']);
        end
        for i=1:M_.exo_nbr
            eval(['oo_.SmoothedShocks.' deblank(M_.exo_names(i,:)) ' = innov(i,:)'';']);
        end
    end
    return
end

if isequal(options_.mode_compute,6)
    % Erase previously computed optimal mh scale parameter.
    delete([M_.fname '_optimal_mh_scale_parameter.mat'])
end


%% Estimation of the posterior mode or likelihood mode
if ~isequal(options_.mode_compute,0) && ~options_.mh_posterior_mode_estimation
    switch options_.mode_compute
      case 1
        optim_options = optimset('display','iter','LargeScale','off', ...
                                 'MaxFunEvals',100000,'TolFun',1e-8,'TolX',1e-6);
        if isfield(options_,'optim_opt')
            eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
        end
        if options_.analytic_derivation,
            optim_options = optimset(optim_options,'GradObj','on');
        end
            [xparam1,fval,exitflag,output,lamdba,grad,hessian_fmincon] = ...
                fmincon(objective_function,xparam1,[],[],[],[],lb,ub,[],optim_options,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
      case 2
        error('ESTIMATION: mode_compute=2 option (Lester Ingber''s Adaptive Simulated Annealing) is no longer available')
      case 3
        optim_options = optimset('display','iter','MaxFunEvals',100000,'TolFun',1e-8,'TolX',1e-6);
        if isfield(options_,'optim_opt')
            eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
        end
        if options_.analytic_derivation,
            optim_options = optimset(optim_options,'GradObj','on');
        end
        [xparam1,fval,exitflag] = fminunc(objective_function,xparam1,optim_options,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
      case 4
        H0 = 1e-4*eye(nx);
        crit = 1e-7;
        nit = 1000;
        verbose = 2;
        if options_.analytic_derivation,
            analytic_grad=1;
        else
            analytic_grad=[];
        end

            [fval,xparam1,grad,hessian_csminwel,itct,fcount,retcodehat] = ...
                csminwel1(objective_function,xparam1,H0,analytic_grad,crit,nit,options_.gradient_method,options_.gradient_epsilon,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
            disp(sprintf('Objective function at mode: %f',fval))
      case 5
        if isfield(options_,'hess')
            flag = options_.hess;
        else
            flag = 1;
        end
        if isfield(options_,'ftol')
            crit = options_.ftol;
        else
            crit = 1.e-5;
        end
        if options_.analytic_derivation,
            analytic_grad=1;
            ana_deriv = options_.analytic_derivation;
            options_.analytic_derivation = -1;
            crit = 1.e-7;
            flag = 0;
        else
            analytic_grad=0;
        end
        if isfield(options_,'nit')
            nit = options_.nit;
        else
            nit=1000;
        end
        [xparam1,hh,gg,fval,invhess] = newrat(objective_function,xparam1,analytic_grad,crit,nit,flag,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
        if options_.analytic_derivation,
            options_.analytic_derivation = ana_deriv;
        end
        parameter_names = bayestopt_.name;
        save([M_.fname '_mode.mat'],'xparam1','hh','gg','fval','invhess','parameter_names');
      case 6
        fval = feval(objective_function,xparam1,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
        OldMode = fval;
        if ~exist('MeanPar','var')
            MeanPar = xparam1;
        end
        if exist('hh','var')
            CovJump = inv(hh);
        else% The covariance matrix is initialized with the prior
            % covariance (a diagonal matrix) %%Except for infinite variances ;-)
            varinit = 'prior';
            if strcmpi(varinit,'prior')
                stdev = bayestopt_.p2;
                indx = find(isinf(stdev));
                stdev(indx) = ones(length(indx),1)*sqrt(10);
                vars = stdev.^2;
                CovJump = diag(vars);
            elseif strcmpi(varinit,'eye')
                vars = ones(length(bayestopt_.p2),1)*0.1;
                CovJump = diag(vars);
            else
                disp('gmhmaxlik :: Error!')
                return
            end
        end
        OldPostVar = CovJump;
        Scale = options_.mh_jscale;
        for i=1:options_.Opt6Iter
            if i == 1
                if options_.Opt6Iter > 1
                    flag = '';
                else
                    flag = 'LastCall';
                end
                [xparam1,PostVar,Scale,PostMean] = ...
                    gmhmaxlik(objective_function,xparam1,[lb ub],options_.Opt6Numb,Scale,flag,MeanPar,CovJump,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
                fval = feval(objective_function,xparam1,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
                options_.mh_jscale = Scale;
                mouvement = max(max(abs(PostVar-OldPostVar)));
                disp(' ')
                disp('========================================================== ')
                disp(['   Change in the covariance matrix = ' num2str(mouvement) '.'])
                disp(['   Mode improvement = ' num2str(abs(OldMode-fval))])
                disp(['   New value of jscale = ' num2str(Scale)])
                disp('========================================================== ')
                OldMode = fval;
            else
                OldPostVar = PostVar;
                if i<options_.Opt6Iter
                    flag = '';
                else
                    flag = 'LastCall';
                end
                [xparam1,PostVar,Scale,PostMean] = ...
                    gmhmaxlik(objective_function,xparam1,[lb ub],...
                              options_.Opt6Numb,Scale,flag,PostMean,PostVar,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
                fval = feval(objective_function,xparam1,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
                options_.mh_jscale = Scale;
                mouvement = max(max(abs(PostVar-OldPostVar)));
                fval = dsge_likelihood(xparam1,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
                disp(['Change in the covariance matrix = ' num2str(mouvement) '.'])
                disp(['Mode improvement = ' num2str(abs(OldMode-fval))])
                OldMode = fval;
            end
            hh = inv(PostVar);
            save([M_.fname '_mode.mat'],'xparam1','hh');
            save([M_.fname '_optimal_mh_scale_parameter.mat'],'Scale');
            bayestopt_.jscale = ones(length(xparam1),1)*Scale;
        end
      case 7
        % Matlab's simplex (Optimization toolbox needed).
        optim_options = optimset('display','iter','MaxFunEvals',1000000,'MaxIter',6000,'TolFun',1e-8,'TolX',1e-6);
        if isfield(options_,'optim_opt')
            eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
        end
        [xparam1,fval,exitflag] = fminsearch(objective_function,xparam1,optim_options,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
      case 8
        % Dynare implementation of the simplex algorithm.
        [xparam1,fval,exitflag] = simplex_optimization_routine(objective_function,xparam1,options_.simplex,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
      case 9
        H0 = 1e-4*ones(nx,1);
        warning('off','CMAES:NonfinitenessRange');
        warning('off','CMAES:InitialSigma');
        [x, fval, COUNTEVAL, STOPFLAG, OUT, BESTEVER] = cmaes(func2str(objective_function),xparam1,H0,options_.cmaes,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
        xparam1=BESTEVER.x;
        disp(sprintf('\n Objective function at mode: %f',fval))
      case 101
        myoptions=soptions;
        myoptions(2)=1e-6; %accuracy of argument
        myoptions(3)=1e-6; %accuracy of function (see Solvopt p.29)
        myoptions(5)= 1.0;
        [xparam1,fval]=solvopt(xparam1,objective_function,[],myoptions,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
      case 102
        %simulating annealing
        %        LB=zeros(size(xparam1))-20;
        % UB=zeros(size(xparam1))+20;
        LB = xparam1 - 1;
        UB = xparam1 + 1;
        neps=10;
        %  Set input parameters.
        maxy=0;
        epsilon=1.0e-9;
        rt_=.10;
        t=15.0;
        ns=10;
        nt=10;
        maxevl=100000000;
        idisp =1;
        npar=length(xparam1);

        disp(['size of param',num2str(length(xparam1))])
        c=.1*ones(npar,1);
        %*  Set input values of the input/output parameters.*

        vm=1*ones(npar,1);
        disp(['number of parameters= ' num2str(npar) 'max= '  num2str(maxy) 't=  ' num2str(t)]);
        disp(['rt_=  '  num2str(rt_) 'eps=  '  num2str(epsilon) 'ns=  '  num2str(ns)]);
        disp(['nt=  '  num2str(nt) 'neps= '   num2str(neps) 'maxevl=  '  num2str(maxevl)]);
        %      disp(['iprint=   '   num2str(iprint) 'seed=   '   num2str(seed)]);
        disp '  ';
        disp '  ';
        disp(['starting values(x)  ' num2str(xparam1')]);
        disp(['initial step length(vm)  '  num2str(vm')]);
        disp(['lower bound(lb)', 'initial conditions', 'upper bound(ub)' ]);
        disp([LB xparam1 UB]);
        disp(['c vector   ' num2str(c')]);

        [xparam1, fval, nacc, nfcnev, nobds, ier, t, vm] = sa(objective_function,xparam1,maxy,rt_,epsilon,ns,nt ...
                                                              ,neps,maxevl,LB,UB,c,idisp ,t,vm,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
      case 'prior'
        hh = diag(bayestopt_.p2.^2);
      otherwise
        if ischar(options_.mode_compute)
            [xparam1, fval, retcode ] = feval(options_.mode_compute,objective_function,xparam1,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
        else
            error(['dynare_estimation:: mode_compute = ' int2str(options_.mode_compute) ' option is unknown!'])
        end
    end
    if ~isequal(options_.mode_compute,6) && ~isequal(options_.mode_compute,'prior')
        if options_.cova_compute == 1
            if options_.analytic_derivation && strcmp(func2str(objective_function),'dsge_likelihood'),
                ana_deriv = options_.analytic_derivation;
                options_.analytic_derivation = 2;
                [junk1, junk2, hh] = feval(objective_function,xparam1, ...
                    dataset_,options_,M_,estim_params_,bayestopt_,oo_);
                options_.analytic_derivation = ana_deriv;
                
            else
                hh = reshape(hessian(objective_function,xparam1, ...
                    options_.gstep,dataset_,options_,M_,estim_params_,bayestopt_,oo_),nx,nx);
            end
        end
    end
    parameter_names = bayestopt_.name;
    if options_.cova_compute
        save([M_.fname '_mode.mat'],'xparam1','hh','parameter_names');
    else
        save([M_.fname '_mode.mat'],'xparam1','parameter_names');
    end
end

if options_.cova_compute == 0
    hh = [];%NaN(length(xparam1),length(xparam1));
end

if ~options_.mh_posterior_mode_estimation && options_.cova_compute
    try
        chol(hh);
    catch
        disp(' ')
        disp('POSTERIOR KERNEL OPTIMIZATION PROBLEM!')
        disp(' (minus) the hessian matrix at the "mode" is not positive definite!')
        disp('=> posterior variance of the estimated parameters are not positive.')
        disp('You should  try  to change the initial values of the parameters using')
        disp('the estimated_params_init block, or use another optimization routine.')
        warning('The results below are most likely wrong!');
    end
end

if options_.mode_check == 1 && ~options_.mh_posterior_mode_estimation
    mode_check(objective_function,xparam1,hh,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
end

oo_.posterior.optimization.mode = xparam1;
oo_.posterior.optimization.variance = [];
if ~options_.mh_posterior_mode_estimation
    if options_.cova_compute
        invhess = inv(hh);
        stdh = sqrt(diag(invhess));
        oo_.posterior.optimization.variance = invhess;
    end
else
    variances = bayestopt_.p2.*bayestopt_.p2;
    idInf = isinf(variances);
    variances(idInf) = 1;
    invhess = options_.mh_posterior_mode_estimation*diag(variances);
    xparam1 = bayestopt_.p5;
    idNaN = isnan(xparam1);
    xparam1(idNaN) = bayestopt_.p1(idNaN);
    xparam1 = transpose(xparam1);
end

if ~options_.cova_compute
    stdh = NaN(length(xparam1),1);
end

if any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation
    disp(' ')
    disp('RESULTS FROM POSTERIOR MAXIMIZATION')
    tstath = zeros(nx,1);
    for i = 1:nx
        tstath(i) = abs(xparam1(i))/stdh(i);
    end

    header_width = row_header_width(M_,estim_params_,bayestopt_);

    tit1 = sprintf('%-*s %7s %8s %7s %6s %4s %6s\n',header_width-2,' ','prior mean', ...
                   'mode','s.d.','t-stat','prior','pstdev');
    if np
        ip = nvx+nvn+ncx+ncn+1;
        disp('parameters')
        disp(tit1)
        for i=1:np
            name = bayestopt_.name{ip};
            disp(sprintf('%-*s %7.3f %8.4f %7.4f %7.4f %4s %6.4f', ...
                         header_width,name, ...
                         bayestopt_.p1(ip),xparam1(ip),stdh(ip),tstath(ip), ...
                         pnames(bayestopt_.pshape(ip)+1,:), ...
                         bayestopt_.p2(ip)));
            eval(['oo_.posterior_mode.parameters.' name ' = xparam1(ip);']);
            eval(['oo_.posterior_std.parameters.' name ' = stdh(ip);']);
            ip = ip+1;
        end
    end
    if nvx
        ip = 1;
        disp('standard deviation of shocks')
        disp(tit1)
        for i=1:nvx
            k = estim_params_.var_exo(i,1);
            name = deblank(M_.exo_names(k,:));
            disp(sprintf('%-*s %7.3f %8.4f %7.4f %7.4f %4s %6.4f', ...
                         header_width,name,bayestopt_.p1(ip),xparam1(ip), ...
                         stdh(ip),tstath(ip),pnames(bayestopt_.pshape(ip)+1,:), ...
                         bayestopt_.p2(ip)));
            M_.Sigma_e(k,k) = xparam1(ip)*xparam1(ip);
            eval(['oo_.posterior_mode.shocks_std.' name ' = xparam1(ip);']);
            eval(['oo_.posterior_std.shocks_std.' name ' = stdh(ip);']);
            ip = ip+1;
        end
    end
    if nvn
        disp('standard deviation of measurement errors')
        disp(tit1)
        ip = nvx+1;
        for i=1:nvn
            name = deblank(options_.varobs(estim_params_.var_endo(i,1),:));
            disp(sprintf('%-*s %7.3f %8.4f %7.4f %7.4f %4s %6.4f', ...
                         header_width,name,bayestopt_.p1(ip), ...
                         xparam1(ip),stdh(ip),tstath(ip), ...
                         pnames(bayestopt_.pshape(ip)+1,:), ...
                         bayestopt_.p2(ip)));
            eval(['oo_.posterior_mode.measurement_errors_std.' name ' = xparam1(ip);']);
            eval(['oo_.posterior_std.measurement_errors_std.' name ' = stdh(ip);']);
            ip = ip+1;
        end
    end
    if ncx
        disp('correlation of shocks')
        disp(tit1)
        ip = nvx+nvn+1;
        for i=1:ncx
            k1 = estim_params_.corrx(i,1);
            k2 = estim_params_.corrx(i,2);
            name = [deblank(M_.exo_names(k1,:)) ',' deblank(M_.exo_names(k2,:))];
            NAME = [deblank(M_.exo_names(k1,:)) '_' deblank(M_.exo_names(k2,:))];
            disp(sprintf('%-*s %7.3f %8.4f %7.4f %7.4f %4s %6.4f', ...
                         header_width,name,bayestopt_.p1(ip),xparam1(ip),stdh(ip),tstath(ip),  ...
                         pnames(bayestopt_.pshape(ip)+1,:), bayestopt_.p2(ip)));
            M_.Sigma_e(k1,k2) = xparam1(ip)*sqrt(M_.Sigma_e(k1,k1)*M_.Sigma_e(k2,k2));
            M_.Sigma_e(k2,k1) = M_.Sigma_e(k1,k2);
            eval(['oo_.posterior_mode.shocks_corr.' NAME ' = xparam1(ip);']);
            eval(['oo_.posterior_std.shocks_corr.' NAME ' = stdh(ip);']);
            ip = ip+1;
        end
    end
    if ncn
        disp('correlation of measurement errors')
        disp(tit1)
        ip = nvx+nvn+ncx+1;
        for i=1:ncn
            k1 = estim_params_.corrn(i,1);
            k2 = estim_params_.corrn(i,2);
            name = [deblank(M_.endo_names(k1,:)) ',' deblank(M_.endo_names(k2,:))];
            NAME = [deblank(M_.endo_names(k1,:)) '_' deblank(M_.endo_names(k2,:))];
            disp(sprintf('%-*s %7.3f %8.4f %7.4f %7.4f %4s %6.4f', ...
                         header_width,name,bayestopt_.p1(ip),xparam1(ip),stdh(ip),tstath(ip), ...
                         pnames(bayestopt_.pshape(ip)+1,:), bayestopt_.p2(ip)));
            eval(['oo_.posterior_mode.measurement_errors_corr.' NAME ' = xparam1(ip);']);
            eval(['oo_.posterior_std.measurement_errors_corr.' NAME ' = stdh(ip);']);
            ip = ip+1;
        end
    end
    %% Laplace approximation to the marginal log density:
    if options_.cova_compute
        estim_params_nbr = size(xparam1,1);
        scale_factor = -sum(log10(diag(invhess)));
        log_det_invhess = -estim_params_nbr*log(scale_factor)+log(det(scale_factor*invhess));
        likelihood = feval(objective_function,xparam1,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
        oo_.MarginalDensity.LaplaceApproximation = .5*estim_params_nbr*log(2*pi) + .5*log_det_invhess - likelihood;
        disp(' ')
        disp(sprintf('Log data density [Laplace approximation] is %f.',oo_.MarginalDensity.LaplaceApproximation))
        disp(' ')
    end
elseif ~any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation
    disp(' ')
    disp('RESULTS FROM MAXIMUM LIKELIHOOD')
    tstath = zeros(nx,1);
    for i = 1:nx
        tstath(i) = abs(xparam1(i))/stdh(i);
    end
    header_width = row_header_width(M_,estim_params_,bayestopt_);
    tit1 = sprintf('%-*s %10s %7s %6s\n',header_width-2,' ','Estimate','s.d.','t-stat');
    if np
        ip = nvx+nvn+ncx+ncn+1;
        disp('parameters')
        disp(tit1)
        for i=1:np
            name = bayestopt_.name{ip};
            disp(sprintf('%-*s %8.4f %7.4f %7.4f', ...
                         header_width,name,xparam1(ip),stdh(ip),tstath(ip)));
            eval(['oo_.mle_mode.parameters.' name ' = xparam1(ip);']);
            eval(['oo_.mle_std.parameters.' name ' = stdh(ip);']);
            ip = ip+1;
        end
    end
    if nvx
        ip = 1;
        disp('standard deviation of shocks')
        disp(tit1)
        for i=1:nvx
            k = estim_params_.var_exo(i,1);
            name = deblank(M_.exo_names(k,:));
            disp(sprintf('%-*s %8.4f %7.4f %7.4f',header_width,name,xparam1(ip),stdh(ip),tstath(ip)));
            M_.Sigma_e(k,k) = xparam1(ip)*xparam1(ip);
            eval(['oo_.mle_mode.shocks_std.' name ' = xparam1(ip);']);
            eval(['oo_.mle_std.shocks_std.' name ' = stdh(ip);']);
            ip = ip+1;
        end
    end
    if nvn
        disp('standard deviation of measurement errors')
        disp(tit1)
        ip = nvx+1;
        for i=1:nvn
            name = deblank(options_.varobs(estim_params_.var_endo(i,1),:));
            disp(sprintf('%-*s %8.4f %7.4f %7.4f',header_width,name,xparam1(ip),stdh(ip),tstath(ip)))
            eval(['oo_.mle_mode.measurement_errors_std.' name ' = xparam1(ip);']);
            eval(['oo_.mle_std.measurement_errors_std.' name ' = stdh(ip);']);
            ip = ip+1;
        end
    end
    if ncx
        disp('correlation of shocks')
        disp(tit1)
        ip = nvx+nvn+1;
        for i=1:ncx
            k1 = estim_params_.corrx(i,1);
            k2 = estim_params_.corrx(i,2);
            name = [deblank(M_.exo_names(k1,:)) ',' deblank(M_.exo_names(k2,:))];
            NAME = [deblank(M_.exo_names(k1,:)) '_' deblank(M_.exo_names(k2,:))];
            disp(sprintf('%-*s %8.4f %7.4f %7.4f', header_width,name,xparam1(ip),stdh(ip),tstath(ip)));
            M_.Sigma_e(k1,k2) = xparam1(ip)*sqrt(M_.Sigma_e(k1,k1)*M_.Sigma_e(k2,k2));
            M_.Sigma_e(k2,k1) = M_.Sigma_e(k1,k2);
            eval(['oo_.mle_mode.shocks_corr.' NAME ' = xparam1(ip);']);
            eval(['oo_.mle_std.shocks_corr.' NAME ' = stdh(ip);']);
            ip = ip+1;
        end
    end
    if ncn
        disp('correlation of measurement errors')
        disp(tit1)
        ip = nvx+nvn+ncx+1;
        for i=1:ncn
            k1 = estim_params_.corrn(i,1);
            k2 = estim_params_.corrn(i,2);
            name = [deblank(M_.endo_names(k1,:)) ',' deblank(M_.endo_names(k2,:))];
            NAME = [deblank(M_.endo_names(k1,:)) '_' deblank(M_.endo_names(k2,:))];
            disp(sprintf('%-*s %8.4f %7.4f %7.4f',header_width,name,xparam1(ip),stdh(ip),tstath(ip)));
            eval(['oo_.mle_mode.measurement_error_corr.' NAME ' = xparam1(ip);']);
            eval(['oo_.mle_std.measurement_error_corr.' NAME ' = stdh(ip);']);
            ip = ip+1;
        end
    end
end


OutputDirectoryName = CheckPath('Output',M_.dname);

if any(bayestopt_.pshape > 0) && options_.TeX %% Bayesian estimation (posterior mode) Latex output
    if np
        filename = [OutputDirectoryName '/' M_.fname '_Posterior_Mode_1.TeX'];
        fidTeX = fopen(filename,'w');
        fprintf(fidTeX,'%% TeX-table generated by dynare_estimation (Dynare).\n');
        fprintf(fidTeX,'%% RESULTS FROM POSTERIOR MAXIMIZATION (parameters)\n');
        fprintf(fidTeX,['%% ' datestr(now,0)]);
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,'\\begin{center}\n');
        fprintf(fidTeX,'\\begin{longtable}{l|lcccc} \n');
        fprintf(fidTeX,'\\caption{Results from posterior maximization (parameters)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:1}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. & Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endfirsthead \n');
        fprintf(fidTeX,'\\caption{(continued)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:1}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. & Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endhead \n');
        fprintf(fidTeX,'\\hline \\multicolumn{6}{r}{(Continued on next page)} \\\\ \\hline \\endfoot \n');
        fprintf(fidTeX,'\\hline \\hline \\endlastfoot \n');
        ip = nvx+nvn+ncx+ncn+1;
        for i=1:np
            fprintf(fidTeX,'$%s$ & %s & %7.3f & %6.4f & %8.4f & %7.4f \\\\ \n',...
                    M_.param_names_tex(estim_params_.param_vals(i,1),:),...
                    deblank(pnames(bayestopt_.pshape(ip)+1,:)),...
                    bayestopt_.p1(ip),...
                    bayestopt_.p2(ip),...
                    xparam1(ip),...
                    stdh(ip));
            ip = ip + 1;
        end
        fprintf(fidTeX,'\\end{longtable}\n ');    
        fprintf(fidTeX,'\\end{center}\n');
        fprintf(fidTeX,'%% End of TeX file.\n');
        fclose(fidTeX);
    end
    if nvx
        TeXfile = [OutputDirectoryName '/' M_.fname '_Posterior_Mode_2.TeX'];
        fidTeX = fopen(TeXfile,'w');
        fprintf(fidTeX,'%% TeX-table generated by dynare_estimation (Dynare).\n');
        fprintf(fidTeX,'%% RESULTS FROM POSTERIOR MAXIMIZATION (standard deviation of structural shocks)\n');
        fprintf(fidTeX,['%% ' datestr(now,0)]);
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,'\\begin{center}\n');
        fprintf(fidTeX,'\\begin{longtable}{l|lcccc} \n');
        fprintf(fidTeX,'\\caption{Results from posterior maximization (standard deviation of structural shocks)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:2}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. & Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endfirsthead \n');
        fprintf(fidTeX,'\\caption{(continued)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:2}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. & Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endhead \n');
        fprintf(fidTeX,'\\hline \\multicolumn{6}{r}{(Continued on next page)} \\\\ \\hline \\endfoot \n');
        fprintf(fidTeX,'\\hline \\hline \\endlastfoot \n');
        ip = 1;
        for i=1:nvx
            k = estim_params_.var_exo(i,1);
            fprintf(fidTeX,[ '$%s$ & %4s & %7.3f & %6.4f & %8.4f & %7.4f \\\\ \n'],...
                    deblank(M_.exo_names_tex(k,:)),...
                    deblank(pnames(bayestopt_.pshape(ip)+1,:)),...
                    bayestopt_.p1(ip),...
                    bayestopt_.p2(ip),...
                    xparam1(ip), ...
                    stdh(ip));
            ip = ip+1;
        end
        fprintf(fidTeX,'\\end{longtable}\n ');    
        fprintf(fidTeX,'\\end{center}\n');
        fprintf(fidTeX,'%% End of TeX file.\n');
        fclose(fidTeX);
    end
    if nvn
        TeXfile = [OutputDirectoryName '/' M_.fname '_Posterior_Mode_3.TeX'];
        fidTeX  = fopen(TeXfile,'w');
        fprintf(fidTeX,'%% TeX-table generated by dynare_estimation (Dynare).\n');
        fprintf(fidTeX,'%% RESULTS FROM POSTERIOR MAXIMIZATION (standard deviation of measurement errors)\n');
        fprintf(fidTeX,['%% ' datestr(now,0)]);
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,'\\begin{center}\n');
        fprintf(fidTeX,'\\begin{longtable}{l|lcccc} \n');
        fprintf(fidTeX,'\\caption{Results from posterior maximization (standard deviation of measurement errors)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:3}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. &  Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endfirsthead \n');
        fprintf(fidTeX,'\\caption{(continued)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:3}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. &  Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endhead \n');
        fprintf(fidTeX,'\\hline \\multicolumn{6}{r}{(Continued on next page)} \\\\ \\hline \\endfoot \n');
        fprintf(fidTeX,'\\hline \\hline \\endlastfoot \n');
        ip = nvx+1;
        for i=1:nvn
            idx = strmatch(options_.varobs(estim_params_.var_endo(i,1),:),M_.endo_names);
            fprintf(fidTeX,'$%s$ & %4s & %7.3f & %6.4f & %8.4f & %7.4f \\\\ \n',...
                    deblank(M_.endo_names_tex(idx,:)), ...
                    deblank(pnames(bayestopt_.pshape(ip)+1,:)), ...
                    bayestopt_.p1(ip), ...
                    bayestopt_.p2(ip),...
                    xparam1(ip),...
                    stdh(ip));
            ip = ip+1;
        end
        fprintf(fidTeX,'\\end{longtable}\n ');    
        fprintf(fidTeX,'\\end{center}\n');
        fprintf(fidTeX,'%% End of TeX file.\n');
        fclose(fidTeX);
    end
    if ncx
        TeXfile = [OutputDirectoryName '/' M_.fname '_Posterior_Mode_4.TeX'];
        fidTeX = fopen(TeXfile,'w');
        fprintf(fidTeX,'%% TeX-table generated by dynare_estimation (Dynare).\n');
        fprintf(fidTeX,'%% RESULTS FROM POSTERIOR MAXIMIZATION (correlation of structural shocks)\n');
        fprintf(fidTeX,['%% ' datestr(now,0)]);
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,'\\begin{center}\n');
        fprintf(fidTeX,'\\begin{longtable}{l|lcccc} \n');
        fprintf(fidTeX,'\\caption{Results from posterior parameters (correlation of structural shocks)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:4}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. &  Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endfirsthead \n');
        fprintf(fidTeX,'\\caption{(continued)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:4}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. &  Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endhead \n');
        fprintf(fidTeX,'\\hline \\multicolumn{6}{r}{(Continued on next page)} \\\\ \\hline \\endfoot \n');
        fprintf(fidTeX,'\\hline \\hline \\endlastfoot \n');
        ip = nvx+nvn+1;
        for i=1:ncx
            k1 = estim_params_.corrx(i,1);
            k2 = estim_params_.corrx(i,2);
            fprintf(fidTeX,[ '$%s$ & %s & %7.3f & %6.4f & %8.4f & %7.4f \\\\ \n'],...
                    [deblank(M_.exo_names_tex(k1,:)) ',' deblank(M_.exo_names_tex(k2,:))], ...
                    deblank(pnames(bayestopt_.pshape(ip)+1,:)), ...
                    bayestopt_.p1(ip), ...
                    bayestopt_.p2(ip), ...
                    xparam1(ip), ...
                    stdh(ip));
            ip = ip+1;
        end
        fprintf(fidTeX,'\\end{longtable}\n ');    
        fprintf(fidTeX,'\\end{center}\n');
        fprintf(fidTeX,'%% End of TeX file.\n');
        fclose(fidTeX);
    end
    if ncn
        TeXfile = [OutputDirectoryName '/' M_.fname '_Posterior_Mode_5.TeX'];
        fidTeX = fopen(TeXfile,'w');
        fprintf(fidTeX,'%% TeX-table generated by dynare_estimation (Dynare).\n');
        fprintf(fidTeX,'%% RESULTS FROM POSTERIOR MAXIMIZATION (correlation of measurement errors)\n');
        fprintf(fidTeX,['%% ' datestr(now,0)]);
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,' \n');
        fprintf(fidTeX,'\\begin{center}\n');
        fprintf(fidTeX,'\\begin{longtabe}{l|lcccc} \n');
        fprintf(fidTeX,'\\caption{Results from posterior parameters (correlation of measurement errors)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:5}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. &  Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endfirsthead \n');
        fprintf(fidTeX,'\\caption{(continued)}\n ');
        fprintf(fidTeX,'\\label{Table:Posterior:5}\\\\\n');
        fprintf(fidTeX,'\\hline\\hline \\\\ \n');
        fprintf(fidTeX,'  & Prior distribution & Prior mean  & Prior s.d. &  Posterior mode & s.d. \\\\ \n');
        fprintf(fidTeX,'\\hline \\endhead \n');
        fprintf(fidTeX,'\\hline \\multicolumn{6}{r}{(Continued on next page)} \\\\ \\hline \\endfoot \n');
        fprintf(fidTeX,'\\hline \\hline \\endlastfoot \n');
        ip = nvx+nvn+ncx+1;
        for i=1:ncn
            k1 = estim_params_.corrn(i,1);
            k2 = estim_params_.corrn(i,2);
            fprintf(fidTeX,'$%s$ & %s & %7.3f & %6.4f & %8.4f & %7.4f \\\\ \n',...
                    [deblank(M_.endo_names_tex(k1,:)) ',' deblank(M_.endo_names_tex(k2,:))], ...
                    pnames(bayestopt_.pshape(ip)+1,:), ...
                    bayestopt_.p1(ip), ...
                    bayestopt_.p2(ip), ...
                    xparam1(ip), ...
                    stdh(ip));
            ip = ip+1;
        end
        fprintf(fidTeX,'\\end{longtable}\n ');    
        fprintf(fidTeX,'\\end{center}\n');
        fprintf(fidTeX,'%% End of TeX file.\n');
        fclose(fidTeX);
    end
end

if np > 0
    pindx = estim_params_.param_vals(:,1);
    save([M_.fname '_params.mat'],'pindx');
end

if (any(bayestopt_.pshape  >0 ) && options_.mh_replic) || ...
        (any(bayestopt_.pshape >0 ) && options_.load_mh_file)  %% not ML estimation
    bounds = prior_bounds(bayestopt_,options_);
    bounds(:,1)=max(bounds(:,1),lb);
    bounds(:,2)=min(bounds(:,2),ub);
    bayestopt_.lb = bounds(:,1);
    bayestopt_.ub = bounds(:,2);
    if any(xparam1 < bounds(:,1)) || any(xparam1 > bounds(:,2))
        find(xparam1 < bounds(:,1))
        find(xparam1 > bounds(:,2))
        error('Mode values are outside prior bounds. Reduce prior_trunc.')
    end
    % runs MCMC
    if options_.mh_replic
        if options_.load_mh_file && options_.use_mh_covariance_matrix
            invhess = compute_mh_covariance_matrix;
        end
        ana_deriv = options_.analytic_derivation;
        options_.analytic_derivation = 0;
        if options_.cova_compute
            feval(options_.posterior_sampling_method,objective_function,options_.proposal_distribution,xparam1,invhess,bounds,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
        else
            error('I Cannot start the MCMC because the hessian of the posterior kernel at the mode was not computed.')
        end
        options_.analytic_derivation = ana_deriv;
    end
    if options_.mh_posterior_mode_estimation
        CutSample(M_, options_, estim_params_);
        return
    else
        if ~options_.nodiagnostic && options_.mh_replic > 1000 && options_.mh_nblck > 1
            McMCDiagnostics(options_, estim_params_, M_);
        end
        %% Here i discard first half of the draws:
        CutSample(M_, options_, estim_params_);
        %% Estimation of the marginal density from the Mh draws:
        if options_.mh_replic
            [marginal,oo_] = marginal_density(M_, options_, estim_params_, oo_);
            oo_ = GetPosteriorParametersStatistics(estim_params_, M_, options_, bayestopt_, oo_);
            oo_ = PlotPosteriorDistributions(estim_params_, M_, options_, bayestopt_, oo_);
            [oo_.posterior.metropolis.mean,oo_.posterior.metropolis.variance] ...
                = GetPosteriorMeanVariance(M_,options_.mh_drop);
        else
            load([M_.fname '_results'],'oo_');
        end
        metropolis_draw(1);
        if options_.bayesian_irf
            PosteriorIRF('posterior');
        end
        if options_.moments_varendo
            oo_ = compute_moments_varendo('posterior',options_,M_,oo_,var_list_);
        end
        if options_.smoother || ~isempty(options_.filter_step_ahead) || options_.forecast
            prior_posterior_statistics('posterior',dataset_);
        end
        xparam = get_posterior_parameters('mean');
        M_ = set_all_parameters(xparam,estim_params_,M_);
    end
end

if options_.particle.status
    return
end

if (~((any(bayestopt_.pshape > 0) && options_.mh_replic) || (any(bayestopt_.pshape ...
                                                      > 0) && options_.load_mh_file)) ...
    || ~options_.smoother ) && options_.partial_information == 0  % to be fixed
    %% ML estimation, or posterior mode without metropolis-hastings or metropolis without bayesian smooth variable
    [atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp] = DsgeSmoother(xparam1,dataset_.info.ntobs,dataset_.data,dataset_.missing.aindex,dataset_.missing.state);
    oo_.Smoother.SteadyState = ys;
    oo_.Smoother.TrendCoeffs = trend_coeff;
    oo_.Smoother.variance = P;
    i_endo = bayestopt_.smoother_saved_var_list;
    if options_.nk ~= 0
        oo_.FilteredVariablesKStepAhead = aK(options_.filter_step_ahead, ...
                                             i_endo,:);
        if isfield(options_,'kalman_algo')
            if ~isempty(PK)
                oo_.FilteredVariablesKStepAheadVariances = ...
                    PK(options_.filter_step_ahead,i_endo,i_endo,:);
            end
            if ~isempty(decomp)
                oo_.FilteredVariablesShockDecomposition = ...
                    decomp(options_.filter_step_ahead,i_endo,:,:);
            end
        end
    end
    for i=bayestopt_.smoother_saved_var_list'
        i1 = dr.order_var(bayestopt_.smoother_var_list(i));
        eval(['oo_.SmoothedVariables.' deblank(M_.endo_names(i1,:)) ' = ' ...
                            'atT(i,:)'';']);
        if options_.nk > 0
            eval(['oo_.FilteredVariables.' deblank(M_.endo_names(i1,:)) ...
                  ' = squeeze(aK(1,i,:));']);
        end
        eval(['oo_.UpdatedVariables.' deblank(M_.endo_names(i1,:)) ...
              ' = updated_variables(i,:)'';']);
    end
    if ~options_.nograph,
        [nbplt,nr,nc,lr,lc,nstar] = pltorg(M_.exo_nbr);
        if options_.TeX
            fidTeX = fopen([M_.fname '_SmoothedShocks.TeX'],'w');
            fprintf(fidTeX,'%% TeX eps-loader file generated by dynare_estimation.m (Dynare).\n');
            fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
            fprintf(fidTeX,' \n');
        end
        for plt = 1:nbplt,
            hh = dyn_figure(options_,'Name','Smoothed shocks');
            NAMES = [];
            if options_.TeX, TeXNAMES = []; end
            nstar0=min(nstar,M_.exo_nbr-(plt-1)*nstar);
            for i=1:nstar0,
                k = (plt-1)*nstar+i;
                subplot(nr,nc,i);
                plot([1 gend],[0 0],'-r','linewidth',.5)
                hold on
                plot(1:gend,innov(k,:),'-k','linewidth',1)
                hold off
                name = deblank(M_.exo_names(k,:));
                if isempty(NAMES)
                    NAMES = name;
                else
                    NAMES = char(NAMES,name);
                end
                if ~isempty(options_.XTick)
                    set(gca,'XTick',options_.XTick)
                    set(gca,'XTickLabel',options_.XTickLabel)
                end
                xlim([1 gend])
                if options_.TeX
                    texname = M_.exo_names_tex(k,:);
                    if isempty(TeXNAMES)
                        TeXNAMES = ['$ ' deblank(texname) ' $'];
                    else
                        TeXNAMES = char(TeXNAMES,['$ ' deblank(texname) ' $']);
                    end
                end
                title(name,'Interpreter','none')
                eval(['oo_.SmoothedShocks.' deblank(name) ' = innov(k,:)'';']);
            end
            dyn_saveas(hh,[M_.fname '_SmoothedShocks' int2str(plt)],options_);
            if options_.TeX
                fprintf(fidTeX,'\\begin{figure}[H]\n');
                for jj = 1:nstar0
                    fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
                end
                fprintf(fidTeX,'\\centering \n');
                fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_SmoothedShocks%s}\n',M_.fname,int2str(plt));
                fprintf(fidTeX,'\\caption{Smoothed shocks.}');
                fprintf(fidTeX,'\\label{Fig:SmoothedShocks:%s}\n',int2str(plt));
                fprintf(fidTeX,'\\end{figure}\n');
                fprintf(fidTeX,'\n');
            end
        end
        if options_.TeX
            fprintf(fidTeX,'\n');
            fprintf(fidTeX,'%% End of TeX file.\n');
            fclose(fidTeX);
        end
    end
    %%
    %%  Smooth observational errors...
    %%
    if options_.prefilter == 1
        yf = atT(bayestopt_.mf,:)+repmat(dataset_.descriptive.mean',1,gend);
    elseif options_.loglinear == 1
        yf = atT(bayestopt_.mf,:)+repmat(log(ys(bayestopt_.mfys)),1,gend)+...
             trend_coeff*[1:gend];
    else
        yf = atT(bayestopt_.mf,:)+repmat(ys(bayestopt_.mfys),1,gend)+...
             trend_coeff*[1:gend];
    end
    if nvn
        number_of_plots_to_draw = 0;
        index = [];
        for i=1:n_varobs
            if max(abs(measurement_error)) > 0.000000001
                number_of_plots_to_draw = number_of_plots_to_draw + 1;
                index = cat(1,index,i);
            end
            eval(['oo_.SmoothedMeasurementErrors.' deblank(options_.varobs(i,:)) ...
                  ' = measurement_error(i,:)'';']);
        end
        if ~options_.nograph
            [nbplt,nr,nc,lr,lc,nstar] = pltorg(number_of_plots_to_draw);
            if options_.TeX
                fidTeX = fopen([M_.fname '_SmoothedObservationErrors.TeX'],'w');
                fprintf(fidTeX,'%% TeX eps-loader file generated by dynare_estimation.m (Dynare).\n');
                fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
                fprintf(fidTeX,' \n');
            end
            for plt = 1:nbplt
                hh = dyn_figure(options_,'Name','Smoothed observation errors');
                NAMES = [];
                if options_.TeX, TeXNAMES = []; end
                for i=1:min(nstar,number_of_plots_to_draw-(nbplt-1)*nstar)
                    k = (plt-1)*nstar+i;
                    subplot(nr,nc,i);
                    plot([1 gend],[0 0],'-r','linewidth',.5)
                    hold on
                    plot(1:gend,measurement_error(index(k),:),'-k','linewidth',1)
                    hold off
                    name = deblank(options_.varobs(index(k),:));
                    if isempty(NAMES)
                        NAMES = name;
                    else
                        NAMES = char(NAMES,name);
                    end
                    if ~isempty(options_.XTick)
                        set(gca,'XTick',options_.XTick)
                        set(gca,'XTickLabel',options_.XTickLabel)
                    end
                    if options_.TeX
                        idx = strmatch(options_.varobs(index(k),:),M_.endo_names,'exact');
                        texname = M_.endo_names_tex(idx,:);
                        if isempty(TeXNAMES)
                            TeXNAMES = ['$ ' deblank(texname) ' $'];
                        else
                            TeXNAMES = char(TeXNAMES,['$ ' deblank(texname) ' $']);
                        end
                    end
                    title(name,'Interpreter','none')
                end
                dyn_saveas(hh,[M_.fname '_SmoothedObservationErrors' int2str(plt)],options_);
                if options_.TeX
                    fprintf(fidTeX,'\\begin{figure}[H]\n');
                    for jj = 1:nstar
                        fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
                    end
                    fprintf(fidTeX,'\\centering \n');
                    fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_SmoothedObservationErrors%s}\n',M_.fname,int2str(plt));
                    fprintf(fidTeX,'\\caption{Smoothed observation errors.}');
                    fprintf(fidTeX,'\\label{Fig:SmoothedObservationErrors:%s}\n',int2str(plt));
                    fprintf(fidTeX,'\\end{figure}\n');
                    fprintf(fidTeX,'\n');
                end
            end
            if options_.TeX
                fprintf(fidTeX,'\n');
                fprintf(fidTeX,'%% End of TeX file.\n');
                fclose(fidTeX);
            end
        end
    end
    %%
    %%  Historical and smoothed variabes
    %%
    if ~options_.nograph
    [nbplt,nr,nc,lr,lc,nstar] = pltorg(n_varobs);
    if options_.TeX
        fidTeX = fopen([M_.fname '_HistoricalAndSmoothedVariables.TeX'],'w');
        fprintf(fidTeX,'%% TeX eps-loader file generated by dynare_estimation.m (Dynare).\n');
        fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
        fprintf(fidTeX,' \n');
    end
    for plt = 1:nbplt,
        hh = dyn_figure(options_,'Name','Historical and smoothed variables');
        NAMES = [];
        if options_.TeX, TeXNAMES = []; end
        nstar0=min(nstar,n_varobs-(plt-1)*nstar);
        for i=1:nstar0,
            k = (plt-1)*nstar+i;
            subplot(nr,nc,i);
            plot(1:gend,yf(k,:),'--r','linewidth',1)
            hold on
            plot(1:gend,rawdata(:,k),'--k','linewidth',1)
            hold off
            name = deblank(options_.varobs(k,:));
            if isempty(NAMES)
                NAMES = name;
            else
                NAMES = char(NAMES,name);
            end
            if ~isempty(options_.XTick)
                set(gca,'XTick',options_.XTick)
                set(gca,'XTickLabel',options_.XTickLabel)
            end
            xlim([1 gend])
            if options_.TeX
                idx = strmatch(options_.varobs(k,:),M_.endo_names,'exact');
                texname = M_.endo_names_tex(idx,:);
                if isempty(TeXNAMES)
                    TeXNAMES = ['$ ' deblank(texname) ' $'];
                else
                    TeXNAMES = char(TeXNAMES,['$ ' deblank(texname) ' $']);
                end
            end
            title(name,'Interpreter','none')
        end
        dyn_saveas(hh,[M_.fname '_HistoricalAndSmoothedVariables' int2str(plt)],options_);
        if options_.TeX
            fprintf(fidTeX,'\\begin{figure}[H]\n');
            for jj = 1:nstar0,
                fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
            end
            fprintf(fidTeX,'\\centering \n');
            fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_HistoricalAndSmoothedVariables%s}\n',M_.fname,int2str(plt));
            fprintf(fidTeX,'\\caption{Historical and smoothed variables.}');
            fprintf(fidTeX,'\\label{Fig:HistoricalAndSmoothedVariables:%s}\n',int2str(plt));
            fprintf(fidTeX,'\\end{figure}\n');
            fprintf(fidTeX,'\n');
        end
    end
    if options_.TeX
        fprintf(fidTeX,'\n');
        fprintf(fidTeX,'%% End of TeX file.\n');
        fclose(fidTeX);
    end
    end
end

if options_.forecast > 0 && options_.mh_replic == 0 && ~options_.load_mh_file
    dyn_forecast(var_list_,'smoother');
end

if np > 0
    pindx = estim_params_.param_vals(:,1);
    save([M_.fname '_pindx.mat'] ,'pindx');
end