File: dynare_estimation_init.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (348 lines) | stat: -rw-r--r-- 12,654 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
function [dataset_,xparam1, M_, options_, oo_, estim_params_,bayestopt_, fake] = dynare_estimation_init(var_list_, dname, gsa_flag, M_, options_, oo_, estim_params_, bayestopt_)

% function dynare_estimation_init(var_list_, gsa_flag)
% preforms initialization tasks before estimation or
% global sensitivity analysis
%
% INPUTS
%   var_list_:  selected endogenous variables vector
%   dname:      alternative directory name
%   gsa_flag:   flag for GSA operation (optional)
%
% OUTPUTS
%   data:    data after required transformation
%   rawdata:  data as in the data file
%   xparam1:    initial value of estimated parameters as returned by
%               set_prior()
%
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2003-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if isempty(gsa_flag)
    gsa_flag = 0;
else% Decide if a DSGE or DSGE-VAR has to be estimated.
    if ~isempty(strmatch('dsge_prior_weight',M_.param_names))
        options_.dsge_var = 1;
    end
    var_list_ = check_list_of_variables(options_, M_, var_list_);
    options_.varlist = var_list_;
end

% Get the indices of the observed variables in M_.endo_names.
options_.lgyidx2varobs = zeros(size(M_.endo_names,1),1);
for i = 1:size(M_.endo_names,1)
    tmp = strmatch(deblank(M_.endo_names(i,:)),options_.varobs,'exact');
    if ~isempty(tmp)
        if length(tmp)>1
            disp(' ')
            error(['Multiple declarations of ' deblank(M_.endo_names(i,:)) ' as an observed variable is not allowed!'])
        end
        options_.lgyidx2varobs(i) = tmp;
    end
end

if options_.order>2
    error(['I cannot estimate a model with a ' int2str(options_.order) ' order approximation of the model!'])
end

% Set options_.lik_init equal to 3 if diffuse filter is used or
% kalman_algo refers to a diffuse filter algorithm.
if (options_.diffuse_filter==1) || (options_.kalman_algo > 2)
    if options_.lik_init == 2
        error(['options diffuse_filter, lik_init and/or kalman_algo have ' ...
               'contradictory settings'])
    else
        options_.lik_init = 3;
    end
end

% If options_.lik_init == 1
%  set by default options_.qz_criterium to 1-1e-6
%  and check options_.qz_criterium < 1-eps if options_.lik_init == 1
% Else set by default options_.qz_criterium to 1+1e-6
if options_.lik_init == 1
    if isempty(options_.qz_criterium)
        options_.qz_criterium = 1-1e-6;
    elseif options_.qz_criterium > 1-eps
        error(['estimation: option qz_criterium is too large for estimating ' ...
               'a stationary model. If your model contains unit roots, use ' ...
               'option diffuse_filter'])
    end
elseif isempty(options_.qz_criterium)
    options_.qz_criterium = 1+1e-6;
end

% If the data are prefiltered then there must not be constants in the
% measurement equation of the DSGE model or in the DSGE-VAR model.
if options_.prefilter == 1
    options_.noconstant = 1;
end

% Set options related to filtered variables.
if ~isequal(options_.filtered_vars,0) && isempty(options_.filter_step_ahead)
    options_.filter_step_ahead = 1;
end
if ~isequal(options_.filtered_vars,0) && isequal(options_.filter_step_ahead,0)
    options_.filter_step_ahead = 1;
end
if ~isequal(options_.filter_step_ahead,0)
    options_.nk = max(options_.filter_step_ahead);
end

% Set the name of the directory where (intermediary) results will be saved.
if isempty(dname)
    M_.dname = M_.fname;
else
    M_.dname = dname;
end

% Set the number of observed variables.
n_varobs = size(options_.varobs,1);

% Set priors over the estimated parameters.
if ~isempty(estim_params_)
    [xparam1,estim_params_,bayestopt_,lb,ub,M_] = set_prior(estim_params_,M_,options_);
    if any(bayestopt_.pshape > 0)
        % Plot prior densities.
        if ~options_.nograph && options_.plot_priors
            plot_priors(bayestopt_,M_,estim_params_,options_)
        end
        % Set prior bounds
        bounds = prior_bounds(bayestopt_,options_);
        bounds(:,1)=max(bounds(:,1),lb);
        bounds(:,2)=min(bounds(:,2),ub);
    else
        % No priors are declared so Dynare will estimate the model by
        % maximum likelihood with inequality constraints for the parameters.
        options_.mh_replic = 0;% No metropolis.
        bounds(:,1) = lb;
        bounds(:,2) = ub;
    end
    % Test if initial values of the estimated parameters are all between
    % the prior lower and upper bounds.
    if any(xparam1 < bounds(:,1)) || any(xparam1 > bounds(:,2))
        find(xparam1 < bounds(:,1))
        find(xparam1 > bounds(:,2))
        error('Initial parameter values are outside parameter bounds')
    end
    lb = bounds(:,1);
    ub = bounds(:,2);
    bayestopt_.lb = lb;
    bayestopt_.ub = ub;
else% If estim_params_ is empty...
    xparam1 = [];
    bayestopt_.lb = [];
    bayestopt_.ub = [];
    bayestopt_.jscale = [];
    bayestopt_.pshape = [];
    bayestopt_.p1 = [];
    bayestopt_.p2 = [];
    bayestopt_.p3 = [];
    bayestopt_.p4 = [];
    bayestopt_.p5 = [];
    bayestopt_.p6 = [];
    bayestopt_.p7 = [];
    estim_params_.nvx = 0;
    estim_params_.nvn = 0;
    estim_params_.ncx = 0;
    estim_params_.ncn = 0;
    estim_params_.np = 0;
end

% storing prior parameters in results
oo_.prior.mean = bayestopt_.p1;
oo_.prior.variance = diag(bayestopt_.p2.^2);

% Is there a linear trend in the measurement equation?
if ~isfield(options_,'trend_coeffs') % No!
    bayestopt_.with_trend = 0;
else% Yes!
    bayestopt_.with_trend = 1;
    bayestopt_.trend_coeff = {};
    trend_coeffs = options_.trend_coeffs;
    nt = length(trend_coeffs);
    for i=1:n_varobs
        if i > length(trend_coeffs)
            bayestopt_.trend_coeff{i} = '0';
        else
            bayestopt_.trend_coeff{i} = trend_coeffs{i};
        end
    end
end

% Set the "size" of penalty.
bayestopt_.penalty = 1e8;

% Get informations about the variables of the model.
dr = set_state_space(oo_.dr,M_);
oo_.dr = dr;
nstatic = dr.nstatic;          % Number of static variables.
npred = dr.npred;              % Number of predetermined variables.
nspred = dr.nspred;            % Number of predetermined variables in the state equation.

% Test if observed variables are declared.
if isempty(options_.varobs)
    error('VAROBS is missing')
end

% Setting resticted state space (observed + predetermined variables)
var_obs_index = [];
k1 = [];
for i=1:n_varobs
    var_obs_index = [var_obs_index; strmatch(deblank(options_.varobs(i,:)),M_.endo_names(dr.order_var,:),'exact')];
    k1 = [k1; strmatch(deblank(options_.varobs(i,:)),M_.endo_names, 'exact')];
end

% Define union of observed and state variables
k2 = union(var_obs_index,[dr.nstatic+1:dr.nstatic+dr.npred]', 'rows');
% Set restrict_state to postion of observed + state variables in expanded state vector.
oo_.dr.restrict_var_list = k2;
bayestopt_.restrict_var_list = k2;
% set mf0 to positions of state variables in restricted state vector for likelihood computation.
[junk,bayestopt_.mf0] = ismember([dr.nstatic+1:dr.nstatic+dr.npred]',k2);
% Set mf1 to positions of observed variables in restricted state vector for likelihood computation.
[junk,bayestopt_.mf1] = ismember(var_obs_index,k2);
% Set mf2 to positions of observed variables in expanded state vector for filtering and smoothing.
bayestopt_.mf2  = var_obs_index;
bayestopt_.mfys = k1;

[junk,ic] = intersect(k2,nstatic+(1:npred)');
oo_.dr.restrict_columns = [ic; length(k2)+(1:nspred-npred)'];

k3 = [];
k3p = [];
if options_.selected_variables_only
    for i=1:size(var_list_,1)
        k3 = [k3; strmatch(var_list_(i,:),M_.endo_names(dr.order_var,:), ...
                           'exact')];
        k3p = [k3; strmatch(var_list_(i,:),M_.endo_names, ...
                           'exact')];
    end
else
    k3 = (1:M_.endo_nbr)';
    k3p = (1:M_.endo_nbr)';
end

% Define union of observed and state variables
if options_.block == 1
    k1 = k1';
    [k2, i_posA, i_posB] = union(k1', M_.state_var', 'rows');
    % Set restrict_state to postion of observed + state variables in expanded state vector.
    oo_.dr.restrict_var_list  = [k1(i_posA) M_.state_var(sort(i_posB))];
    % set mf0 to positions of state variables in restricted state vector for likelihood computation.
    [junk,bayestopt_.mf0] = ismember(M_.state_var',oo_.dr.restrict_var_list);
    % Set mf1 to positions of observed variables in restricted state vector for likelihood computation.
    [junk,bayestopt_.mf1] = ismember(k1,oo_.dr.restrict_var_list);
    % Set mf2 to positions of observed variables in expanded state vector for filtering and smoothing.
    bayestopt_.mf2  = var_obs_index;
    bayestopt_.mfys = k1;
    oo_.dr.restrict_columns = [size(i_posA,1)+(1:size(M_.state_var,2))];

    [k2, i_posA, i_posB] = union(k3p, M_.state_var', 'rows');
    bayestopt_.smoother_var_list = [k3p(i_posA); M_.state_var(sort(i_posB))'];
    [junk,junk,bayestopt_.smoother_saved_var_list] = intersect(k3p,bayestopt_.smoother_var_list(:));
    [junk,ic] = intersect(bayestopt_.smoother_var_list,M_.state_var);
    bayestopt_.smoother_restrict_columns = ic;
    [junk,bayestopt_.smoother_mf] = ismember(k1, ...
                                             bayestopt_.smoother_var_list);
else
    k2 = union(var_obs_index,[dr.nstatic+1:dr.nstatic+dr.npred]', 'rows');
    % Set restrict_state to postion of observed + state variables in expanded state vector.
    oo_.dr.restrict_var_list = k2;
    % set mf0 to positions of state variables in restricted state vector for likelihood computation.
    [junk,bayestopt_.mf0] = ismember([dr.nstatic+1:dr.nstatic+dr.npred]',k2);
    % Set mf1 to positions of observed variables in restricted state vector for likelihood computation.
    [junk,bayestopt_.mf1] = ismember(var_obs_index,k2);
    % Set mf2 to positions of observed variables in expanded state vector for filtering and smoothing.
    bayestopt_.mf2  = var_obs_index;
    bayestopt_.mfys = k1;
    [junk,ic] = intersect(k2,nstatic+(1:npred)');
    oo_.dr.restrict_columns = [ic; length(k2)+(1:nspred-npred)'];

    bayestopt_.smoother_var_list = union(k2,k3);
    [junk,junk,bayestopt_.smoother_saved_var_list] = intersect(k3,bayestopt_.smoother_var_list(:));
    [junk,ic] = intersect(bayestopt_.smoother_var_list,nstatic+(1:npred)');
    bayestopt_.smoother_restrict_columns = ic;
    [junk,bayestopt_.smoother_mf] = ismember(var_obs_index, ...
                                             bayestopt_.smoother_var_list);
end;

if options_.analytic_derivation,
    if ~(exist('sylvester3','file')==2),        
        dynareroot = strrep(which('dynare'),'dynare.m','');
        addpath([dynareroot 'gensylv'])
    end
end

% Test if the data file is declared.
if isempty(options_.datafile)
    if gsa_flag
        dataset_ = [];
%         rawdata = [];
%         data_info = [];
        return
    else
        error('datafile option is missing')
    end
end

% If jscale isn't specified for an estimated parameter, use global option options_.jscale, set to 0.2, by default.
k = find(isnan(bayestopt_.jscale));
bayestopt_.jscale(k) = options_.mh_jscale;

% Load and transform data.
transformation = [];
if options_.loglinear && ~options_.logdata
    transformation = @log;
end
xls.sheet = options_.xls_sheet;
xls.range = options_.xls_range;

if ~isfield(options_,'nobs')
    options_.nobs = [];
end

dataset_ = initialize_dataset(options_.datafile,options_.varobs,options_.first_obs,options_.nobs,transformation,options_.prefilter,xls);

options_.nobs = dataset_.info.ntobs;

% setting noconstant option
if options_.diffuse_filter
    steadystate_check_flag = 0;
else
    steadystate_check_flag = 1;
end

M = M_;
nvx = estim_params_.nvx;
ncx = estim_params_.ncx;
nvn = estim_params_.nvn;
ncn = estim_params_.ncn;
if estim_params_.np
  M.params(estim_params_.param_vals(:,1)) = xparam1(nvx+ncx+nvn+ncn+1:end);
end;
oo_.steady_state = evaluate_steady_state(oo_.steady_state,M,options_,oo_,steadystate_check_flag);
if all(abs(oo_.steady_state(bayestopt_.mfys))<1e-9)
    options_.noconstant = 1;
else
    options_.noconstant = 0;
end