File: evaluate_planner_objective.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (147 lines) | stat: -rw-r--r-- 5,512 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
function planner_objective_value = evaluate_planner_objective(M,options,oo)

%function oo1 = evaluate_planner_objective(dr,M,oo,options)
%  computes value of planner objective function     
% 
% INPUTS
%   M:        (structure) model description
%   options:  (structure) options
%   oo:       (structure) output results
%    
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2007-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

dr = oo.dr;
endo_nbr = M.endo_nbr;
exo_nbr = M.exo_nbr;
nstatic = dr.nstatic;
npred = dr.npred;
lead_lag_incidence = M.lead_lag_incidence;
beta = get_optimal_policy_discount_factor(M.params,M.param_names);
if options.ramsey_policy
    i_org = (1:M.orig_endo_nbr)';
else
    i_org = (1:M.endo_nbr)';
end
ipred = find(lead_lag_incidence(M.maximum_lag,:))';
order_var = dr.order_var;
LQ = true;

Gy = dr.ghx(nstatic+(1:npred),:);
Gu = dr.ghu(nstatic+(1:npred),:);
gy(dr.order_var,:) = dr.ghx;
gu(dr.order_var,:) = dr.ghu;

if options.ramsey_policy && options.order == 1 && ~options.linear
    options.order = 2;
    options.qz_criterium = 1+1e-6;
    [dr,info] = stochastic_solvers(oo.dr,0,M,options,oo);
    Gyy = dr.ghxx(nstatic+(1:npred),:);
    Guu = dr.ghuu(nstatic+(1:npred),:);
    Gyu = dr.ghxu(nstatic+(1:npred),:);
    Gss = dr.ghs2(nstatic+(1:npred),:);
    gyy(dr.order_var,:) = dr.ghxx;
    guu(dr.order_var,:) = dr.ghuu;
    gyu(dr.order_var,:) = dr.ghxu;
    gss(dr.order_var,:) = dr.ghs2;
    LQ = false;
end

ys = oo.dr.ys;

u = oo.exo_simul(1,:)';

[U,Uy,Uyy] = feval([M.fname '_objective_static'],ys,zeros(1,exo_nbr), ...
                   M.params);

Uyy = full(Uyy);

[Uyygygy, err] = A_times_B_kronecker_C(Uyy,gy,gy,options.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
[Uyygugu, err] = A_times_B_kronecker_C(Uyy,gu,gu,options.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
[Uyygygu, err] = A_times_B_kronecker_C(Uyy,gy,gu,options.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);

Wbar =U/(1-beta);
Wy = Uy*gy/(eye(npred)-beta*Gy);
Wu = Uy*gu+beta*Wy*Gu;
if LQ
    Wyy = Uyygygy/(eye(npred*npred)-beta*kron(Gy,Gy));
else
    Wyy = (Uy*gyy+Uyygygy+beta*Wy*Gyy)/(eye(npred*npred)-beta*kron(Gy,Gy));
end
[Wyygugu, err] = A_times_B_kronecker_C(Wyy,Gu,Gu,options.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
[Wyygygu,err] = A_times_B_kronecker_C(Wyy,Gy,Gu,options.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
if LQ
    Wuu = Uyygugu+beta*Wyygugu;
    Wyu = Uyygygu+beta*Wyygygu;
    Wss = beta*Wuu*M.Sigma_e(:)/(1-beta);
else
    Wuu = Uy*guu+Uyygugu+beta*(Wy*Guu+Wyygugu);
    Wyu = Uy*gyu+Uyygygu+beta*(Wy*Gyu+Wyygygu);
    Wss = (Uy*gss+beta*(Wuu*M.Sigma_e(:)+Wy*Gss))/(1-beta);
end
% initialize yhat1 at the steady state
yhat1 = oo.steady_state;
if options.ramsey_policy
    % initialize le Lagrange multipliers to 0 in yhat2
    yhat2 = zeros(M.endo_nbr,1);
    yhat2(1:M.orig_endo_nbr) = oo.steady_state(1:M.orig_endo_nbr);
end
if ~isempty(M.endo_histval)
    % initialize endogenous state variable to histval if necessary
    yhat1(1:M.orig_endo_nbr) = M.endo_histval(1:M.orig_endo_nbr);
    if options.ramsey_policy
        yhat2(1:M.orig_endo_nbr) = M.endo_histval(1:M.orig_endo_nbr);
    end
end
yhat1 = yhat1(dr.order_var(nstatic+(1:npred)),1)-dr.ys(dr.order_var(nstatic+(1:npred)));
yhat2 = yhat2(dr.order_var(nstatic+(1:npred)),1)-dr.ys(dr.order_var(nstatic+(1:npred)));
u = oo.exo_simul(1,:)';

[Wyyyhatyhat1, err] = A_times_B_kronecker_C(Wyy,yhat1,yhat1,options.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
[Wuuuu, err] = A_times_B_kronecker_C(Wuu,u,u,options.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
[Wyuyhatu1, err] = A_times_B_kronecker_C(Wyu,yhat1,u,options.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
planner_objective_value(1) = Wbar+Wy*yhat1+Wu*u+Wyuyhatu1 ...
    + 0.5*(Wyyyhatyhat1 + Wuuuu+Wss);
if options.ramsey_policy
    [Wyyyhatyhat2, err] = A_times_B_kronecker_C(Wyy,yhat2,yhat2,options.threads.kronecker.A_times_B_kronecker_C);
    mexErrCheck('A_times_B_kronecker_C', err);
    [Wyuyhatu2, err] = A_times_B_kronecker_C(Wyu,yhat2,u,options.threads.kronecker.A_times_B_kronecker_C);
    mexErrCheck('A_times_B_kronecker_C', err);
    planner_objective_value(2) = Wbar+Wy*yhat2+Wu*u+Wyuyhatu2 ...
        + 0.5*(Wyyyhatyhat2 + Wuuuu+Wss);
end

if ~options.noprint
    disp(' ')
    disp('Approximated value of planner objective function')
    disp(['    - with initial Lagrange multipliers set to 0: ' ...
          num2str(planner_objective_value(2)) ])
    disp(['    - with initial Lagrange multipliers set to steady state: ' ...
          num2str(planner_objective_value(1)) ])
    disp(' ')
end