1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
function oo = evaluate_smoother(parameters)
% Evaluate the smoother at parameters.
%
% INPUTS
% o parameters a string ('posterior mode','posterior mean','posterior median','prior mode','prior mean') or a vector of values for
% the (estimated) parameters of the model.
%
%
% OUTPUTS
% o oo [structure] results:
% - SmoothedVariables
% - SmoothedShocks
% - SmoothedVariables
% - SmoothedVariables
% - SmoothedVariables
% - SmoothedVariables
% - SmoothedVariables
% - SmoothedVariables
%
% SPECIAL REQUIREMENTS
% None
%
% REMARKS
% [1] This function use persistent variables for the dataset and the description of the missing observations. Consequently, if this function
% is called more than once (by changing the value of parameters) the sample *must not* change.
% Copyright (C) 2010-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global options_ M_ bayestopt_ oo_
persistent dataset_
if nargin==0
parameters = 'posterior_mode';
end
if ischar(parameters)
switch parameters
case 'posterior_mode'
parameters = get_posterior_parameters('mode');
case 'posterior_mean'
parameters = get_posterior_parameters('mean');
case 'posterior_median'
parameters = get_posterior_parameters('median');
case 'prior_mode'
parameters = bayestopt_.p5(:);
case 'prior_mean'
parameters = bayestopt_.p1;
case 'calibration'
if isempty(oo_.dr)
error('You must run ''stoch_simul'' first.');
end
parameters = [];
otherwise
disp('evaluate_smoother:: If the input argument is a string, then it has to be equal to:')
disp(' ''posterior_mode'', ')
disp(' ''posterior_mean'', ')
disp(' ''posterior_median'', ')
disp(' ''prior_mode'' or')
disp(' ''prior_mean''.')
disp(' ''calibration''.')
error
end
end
if isempty(dataset_)
% Load and transform data.
transformation = [];
if options_.loglinear && ~options_.logdata
transformation = @log;
end
xls.sheet = options_.xls_sheet;
xls.range = options_.xls_range;
if ~isfield(options_,'nobs')
options_.nobs = [];
end
dataset_ = initialize_dataset(options_.datafile,options_.varobs,options_.first_obs,options_.nobs,transformation,options_.prefilter,xls);
options_.nobs = dataset_.info.ntobs;
% Determine if a constant is needed.
if options_.steadystate_flag% if the *_steadystate.m file is provided.
[ys,tchek] = feval([M_.fname '_steadystate'],...
[zeros(M_.exo_nbr,1);...
oo_.exo_det_steady_state]);
if size(ys,1) < M_.endo_nbr
if length(M_.aux_vars) > 0
ys = add_auxiliary_variables_to_steadystate(ys,M_.aux_vars,...
M_.fname,...
zeros(M_.exo_nbr,1),...
oo_.exo_det_steady_state,...
M_.params,...
options_.bytecode);
else
error([M_.fname '_steadystate.m doesn''t match the model']);
end
end
oo_.steady_state = ys;
else% if the steady state file is not provided.
[dd,info,M_,options_,oo_] = resol(0,M_,options_,oo_);
oo_.steady_state = dd.ys; clear('dd');
end
if all(abs(oo_.steady_state(bayestopt_.mfys))<1e-9)
options_.noconstant = 1;
else
options_.noconstant = 0;
end
end
pshape_original = bayestopt_.pshape;
bayestopt_.pshape = Inf(size(bayestopt_.pshape));
clear('priordens')
[atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp] = ...
DsgeSmoother(parameters,dataset_.info.ntobs,dataset_.data,dataset_.missing.aindex,dataset_.missing.state);
oo.Smoother.SteadyState = ys;
oo.Smoother.TrendCoeffs = trend_coeff;
if options_.filter_covariance
oo.Smoother.variance = P;
end
i_endo = bayestopt_.smoother_saved_var_list;
if options_.nk ~= 0
oo.FilteredVariablesKStepAhead = ...
aK(options_.filter_step_ahead,i_endo,:);
if ~isempty(PK)
oo.FilteredVariablesKStepAheadVariances = ...
PK(options_.filter_step_ahead,i_endo,i_endo,:);
end
if ~isempty(decomp)
oo.FilteredVariablesShockDecomposition = ...
decomp(options_.filter_step_ahead,i_endo,:,:);
end
end
dr = oo_.dr;
order_var = oo_.dr.order_var;
for i=bayestopt_.smoother_saved_var_list'
i1 = order_var(bayestopt_.smoother_var_list(i));
eval(['oo.SmoothedVariables.' deblank(M_.endo_names(i1,:)) ' = atT(i,:)'';']);
eval(['oo.FilteredVariables.' deblank(M_.endo_names(i1,:)) ' = squeeze(aK(1,i,:));']);
eval(['oo.UpdatedVariables.' deblank(M_.endo_names(i1,:)) ' = updated_variables(i,:)'';']);
end
for i=1:M_.exo_nbr
eval(['oo.SmoothedShocks.' deblank(M_.exo_names(i,:)) ' = innov(i,:)'';']);
end
oo.dr = oo_.dr;
bayestopt_.pshape = pshape_original;
|