File: evaluate_smoother.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (165 lines) | stat: -rw-r--r-- 6,126 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
function oo = evaluate_smoother(parameters)
% Evaluate the smoother at parameters.
%
% INPUTS
%    o parameters  a string ('posterior mode','posterior mean','posterior median','prior mode','prior mean') or a vector of values for
%                  the (estimated) parameters of the model.
%
%
% OUTPUTS
%    o oo       [structure]  results:
%                              - SmoothedVariables
%                              - SmoothedShocks
%                              - SmoothedVariables
%                              - SmoothedVariables
%                              - SmoothedVariables
%                              - SmoothedVariables
%                              - SmoothedVariables
%                              - SmoothedVariables
%
% SPECIAL REQUIREMENTS
%    None
%
% REMARKS
% [1] This function use persistent variables for the dataset and the description of the missing observations. Consequently, if this function
%     is called more than once (by changing the value of parameters) the sample *must not* change.

% Copyright (C) 2010-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global options_ M_ bayestopt_ oo_

persistent dataset_

if nargin==0
    parameters = 'posterior_mode';
end

if ischar(parameters)
    switch parameters
      case 'posterior_mode'
        parameters = get_posterior_parameters('mode');
      case 'posterior_mean'
        parameters = get_posterior_parameters('mean');
      case 'posterior_median'
        parameters = get_posterior_parameters('median');
      case 'prior_mode'
        parameters = bayestopt_.p5(:);
      case 'prior_mean'
        parameters = bayestopt_.p1;
      case 'calibration'
        if isempty(oo_.dr)
            error('You must run ''stoch_simul'' first.');
        end
        parameters = [];
      otherwise
        disp('evaluate_smoother:: If the input argument is a string, then it has to be equal to:')
        disp('                     ''posterior_mode'', ')
        disp('                     ''posterior_mean'', ')
        disp('                     ''posterior_median'', ')
        disp('                     ''prior_mode'' or')
        disp('                     ''prior_mean''.')
        disp('                     ''calibration''.')
        error
    end
end

if isempty(dataset_)
    % Load and transform data.
    transformation = [];
    if options_.loglinear && ~options_.logdata
        transformation = @log;
    end
    xls.sheet = options_.xls_sheet;
    xls.range = options_.xls_range;

    if ~isfield(options_,'nobs')
        options_.nobs = [];
    end

    dataset_ = initialize_dataset(options_.datafile,options_.varobs,options_.first_obs,options_.nobs,transformation,options_.prefilter,xls);
    options_.nobs = dataset_.info.ntobs;

    % Determine if a constant is needed.
    if options_.steadystate_flag% if the *_steadystate.m file is provided.
        [ys,tchek] = feval([M_.fname '_steadystate'],...
                           [zeros(M_.exo_nbr,1);...
                            oo_.exo_det_steady_state]);
        if size(ys,1) < M_.endo_nbr
            if length(M_.aux_vars) > 0
                ys = add_auxiliary_variables_to_steadystate(ys,M_.aux_vars,...
                                                            M_.fname,...
                                                            zeros(M_.exo_nbr,1),...
                                                            oo_.exo_det_steady_state,...
                                                            M_.params,...
                                                            options_.bytecode);
            else
                error([M_.fname '_steadystate.m doesn''t match the model']);
            end
        end
        oo_.steady_state = ys;
    else% if the steady state file is not provided.
        [dd,info,M_,options_,oo_] = resol(0,M_,options_,oo_);
        oo_.steady_state = dd.ys; clear('dd');
    end
    if all(abs(oo_.steady_state(bayestopt_.mfys))<1e-9)
        options_.noconstant = 1;
    else
        options_.noconstant = 0;
    end
end

pshape_original   = bayestopt_.pshape;
bayestopt_.pshape = Inf(size(bayestopt_.pshape));
clear('priordens')

[atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp] = ...
    DsgeSmoother(parameters,dataset_.info.ntobs,dataset_.data,dataset_.missing.aindex,dataset_.missing.state);

oo.Smoother.SteadyState = ys;
oo.Smoother.TrendCoeffs = trend_coeff;
if options_.filter_covariance
    oo.Smoother.variance = P;
end
i_endo = bayestopt_.smoother_saved_var_list;
if options_.nk ~= 0
    oo.FilteredVariablesKStepAhead = ...
        aK(options_.filter_step_ahead,i_endo,:);
    if ~isempty(PK)
        oo.FilteredVariablesKStepAheadVariances = ...
            PK(options_.filter_step_ahead,i_endo,i_endo,:);
    end
    if ~isempty(decomp)
        oo.FilteredVariablesShockDecomposition = ...
            decomp(options_.filter_step_ahead,i_endo,:,:);
    end
end
dr = oo_.dr;
order_var = oo_.dr.order_var;
for i=bayestopt_.smoother_saved_var_list'
    i1 = order_var(bayestopt_.smoother_var_list(i));
    eval(['oo.SmoothedVariables.' deblank(M_.endo_names(i1,:)) ' = atT(i,:)'';']);
    eval(['oo.FilteredVariables.' deblank(M_.endo_names(i1,:)) ' = squeeze(aK(1,i,:));']);
    eval(['oo.UpdatedVariables.' deblank(M_.endo_names(i1,:)) ' = updated_variables(i,:)'';']);
end
for i=1:M_.exo_nbr
    eval(['oo.SmoothedShocks.' deblank(M_.exo_names(i,:)) ' = innov(i,:)'';']);
end

oo.dr = oo_.dr;

bayestopt_.pshape = pshape_original;