File: get_posterior_parameters.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (89 lines) | stat: -rw-r--r-- 2,596 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
function xparam = get_posterior_parameters(type)

% function xparam = get_posterior_parameters(type)
% Selects (estimated) parameters (posterior mode or posterior mean).
% 
% INPUTS 
%   o type       [char]     = 'mode' or 'mean'.
%  
% OUTPUTS 
%   o xparam     vector of estimated parameters  
%
% SPECIAL REQUIREMENTS
%   None.

% Copyright (C) 2006-2009 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global estim_params_ oo_ options_ M_ 

nvx = estim_params_.nvx;
nvn = estim_params_.nvn;
ncx = estim_params_.ncx;
ncn = estim_params_.ncn;
np  = estim_params_.np;

xparam = zeros(nvx+nvn+ncx+ncn+np,1);

m = 1;
for i=1:nvx
    k1 = estim_params_.var_exo(i,1);
    name1 = deblank(M_.exo_names(k1,:));
    xparam(m) = eval(['oo_.posterior_' type '.shocks_std.' name1]);
    M_.Sigma_e(k1,k1) = xparam(m)^2;
    m = m+1;
end

for i=1:nvn
    k1 = estim_params_.var_endo(i,1);
    name1 = deblank(options_.varobs(k1,:));
    xparam(m) = eval(['oo_.posterior_' type '.measurement_errors_std.' name1]);
    m = m+1;
end

for i=1:ncx
    k1 = estim_params_.corrx(i,1);
    k2 = estim_params_.corrx(i,2);
    name1 = deblank(M_.exo_names(k1,:));
    name2 = deblank(M_.exo_names(k2,:));
    xparam(m) = eval(['oo_.posterior_' type '.shocks_corr.' name1 '_' name2]);
    M_.Sigma_e(k1,k2) = xparam(m);
    M_.Sigma_e(k2,k1) = xparam(m);
    m = m+1;
end

for i=1:ncn
    k1 = estim_params_.corrn(i,1);
    k2 = estim_params_.corrn(i,2);
    name1 = deblank(options_.varobs(k1,:));
    name2 = deblank(options_.varobs(k2,:));
    xparam(m) = eval(['oo_.posterior_' type '.measurement_errors_corr.' name1 '_' name2]);
    m = m+1;
end

FirstDeep = m;

for i=1:np
    name1 = deblank(M_.param_names(estim_params_.param_vals(i,1),:));
    xparam(m) = eval(['oo_.posterior_' type '.parameters.' name1]);
    assignin('base',name1,xparam(m));% Useless with version 4 (except maybe for users)
    m = m+1;
end

if np
    M_.params(estim_params_.param_vals(:,1)) = xparam(FirstDeep:end);
end