1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
function ms_sbvar_setup(options_)
% function ms_sbvar_setup(options_)
% does the general file initialization for ms sbvar
%
% INPUTS
% options_: (struct) options
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2003-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if ~isfield(options_.ms,'initial_year')
error('Must set initial_year option');
end
if ~isfield(options_.ms,'final_year')
error('Must set final_year option');
end
if ~isfield(options_,'datafile')
error('Must set datafile option');
end
options_.data = read_variables(options_.datafile, ...
options_.varobs, [], options_.xls_sheet, options_.xls_range);
if options_.ms.upper_cholesky
if options_.ms.lower_cholesky
error(['Upper Cholesky and lower Cholesky decomposition can''t be ' ...
'requested at the same time!'])
else
options_.ms.restriction_fname = 'upper_cholesky';
end
elseif options_.ms.lower_cholesky
options_.ms.restriction_fname = 'lower_cholesky';
elseif ~isempty(options_.ms.Qi) && ~isempty(options_.ms.Ri)
options_.ms.restriction_fname = 'exclusions';
else
options_.ms.restriction_fname = 0;
end
%==========================================================================
%== Markov Process Specification File
%==========================================================================
markov_file = [options_.ms.output_file_tag '_markov_file.dat'];
%==========================================================================
%== BVAR prior
%==========================================================================
%=== The following mu is effective only if indxPrior==1.
%mu = zeros(6,1); % hyperparameters
if length(options_.ms.coefficients_prior_hyperparameters) ~= 6
error('When specifying the coefficients_prior_hyperparameters, you must pass a vector of 6 numbers')
end
mu = options_.ms.coefficients_prior_hyperparameters;
mu = reshape(mu,1,6);
% mu(1): overall tightness for A0 and Aplus
% mu(2): relative tightness for Aplus
% mu(3): relative tightness for the constant term
% mu(4): tightness on lag decay. (1.2 - 1.5 faster decay produces better
% inflation forecasts
% mu(5): weight on nvar sums of coeffs dummy observations (unit roots).
% mu(6): weight on single dummy initial observation including constant
% (cointegration, unit roots, and stationarity).
% Alpha on p. 66 for squared time-varying structural shock lambda.
galp = options_.ms.alpha;
% Beta on p. 66 for squared time-varying structural shock lambda.
gbeta = options_.ms.beta;
% Case 3 (no state change across options_.ms.nlags (l) but allows all variables for a
% given lag to switch states). Normal prior variance for glamda
% (nvar-by-nvar for each state) for different variables in lagged D+. See
% p.71v.
gsig2_lmdm = options_.ms.gsig2_lmdm;
%==========================================================================
%== Data
%==========================================================================
% Read in data to produce rectangular array named xdd. Each column is one
% data series.
xdd=options_.data;
% Information about timing of the data for consistancy checks
% quarters (4) or months (12)
q_m = options_.ms.freq;
% beginning year in data set
yrBin=options_.ms.initial_year;
% beginning quarter or month in data set
%options_.ms.initial_subperiod = 1;
qmBin=options_.ms.initial_subperiod;
% final year in data set
yrFin=options_.ms.final_year;
% final month or quarter in data set
qmFin=options_.ms.final_subperiod;
% first year to use in estimation
yrStart=options_.ms.initial_year;
% first quarter or month to use in estimation
qmStart=options_.ms.initial_subperiod;
% last year to use in estimation
yrEnd=options_.ms.final_year;
% last quater or month to use in estimation
qmEnd=options_.ms.final_subperiod;
% Log variables in xdd
logindx = [];
% Convert percent to decimal in xdd
pctindx = [];
% Select the variable to use and rearrange columns if desired
%vlist = [3 1 2];
%options_.ms.vlist = [1 2 3];
options_.ms.vlist = 1:size(options_.varobs,1);
vlist1=options_.ms.vlist;
%==========================================================================
%==========================================================================
%==========================================================================
%== Beginning of code. Modify below at own risk.
%==========================================================================
% options that may at some point become user specified
%indxC0Pres = 0; % 1: cross-A0-and-A+ restrictions; 0: idfile_const is all we have
indxC0Pres =options_.ms.cross_restrictions;
% Example for indxOres==1: restrictions of the form P(t) = P(t-1).
%Rform = 0; % 1: contemporaneous recursive reduced form; 0: restricted (non-recursive) form
Rform =options_.ms.contemp_reduced_form;
% % % Pseudo = 0; % 1: Pseudo forecasts; 0: real time forecasts
%indxPrior = 1; % 1: Bayesian prior; 0: no prior
indxPrior =options_.ms.bayesian_prior;
%indxDummy = indxPrior; % 1: add dummy observations to the data; 0: no dummy added.
indxDummy = options_.ms.bayesian_prior;
%ndobs = 0; % No dummy observations for xtx, phi, fss, xdatae, etc. Dummy observations are used as an explicit prior in fn_rnrprior_covres_dobs.m.
%ndobs =options_.ms.dummy_obs;
%if indxDummy
% ndobs=nvar+1; % number of dummy observations
%else
% ndobs=0; % no dummy observations
%end
%
hpmsmd = [0.0; 0.0];
indxmsmdeqn = [0; 0; 0; 0]; %This option disenable using this in fn_rnrprior_covres_dobs.m
nStates = -1;
%==========================================================================
%== Create initialization file
%==========================================================================
%======================================================================
%== Check and setup data
%======================================================================
% log data
xdd(:,logindx) = log(xdd(:,logindx));
% convert percentage to decimal
xdd(:,pctindx)=.01*xdd(:,pctindx);
if (q_m ~= 12) && (q_m ~= 4)
disp('Warning: data must be monthly or quarterly!')
return
end
% number of data points
nData=(yrFin-yrBin)*q_m + (qmFin-qmBin+1);
% number of data points in estimation sample
nSample=(yrEnd-yrStart)*q_m + (qmEnd-qmEnd+1);
% number of periods not used at beginning of data (non-negative number)
nStart=(yrStart-yrBin)*q_m + (qmStart-qmBin);
% number of periods not used at end of data (non-positive number)
nEnd=(yrEnd-yrFin)*q_m + (qmEnd-qmFin);
if (nEnd > 0) || (nStart < 0)
disp('Warning: desired estimation period not in data set!')
return
end
if (nSample <= 0)
disp('Warning: no data points in estimation period!')
return
end
% reorder variables and create estimation data set
xdgel=xdd(nStart+1:nData+nEnd,vlist1);
% bad data points
baddata = find(isnan(xdgel));
if ~isempty(baddata)
disp('Warning: some data for estimation period are unavailable.')
return
end
% set nvar and nexo
nvar=size(xdgel,2);
nexo=1;
% Arranged data information, WITHOUT dummy obs when 0 after mu is used.
% See fn_rnrprior_covres_dobs.m for using the dummy observations as part of
% an explicit prior.
[xtx,xty,yty,fss,phi,y,ncoef,xr,Bh] = fn_dataxy(nvar,options_.ms.nlags,xdgel,mu,0,nexo);
%======================================================================
%== Linear Restrictions
%======================================================================
if Rform
Ui=cell(nvar,1); Vi=cell(ncoef,1);
for kj=1:nvar
Ui{kj} = eye(nvar); Vi{kj} = eye(ncoef);
end
else
[Ui,Vi,n0,np,ixmC0Pres] = feval(options_.ms.restriction_fname,nvar,nexo,options_.ms);
if min(n0)==0
disp('A0: restrictions give no free parameters in one of equations')
return
elseif min(np)==0
disp('Aplus: Restrictions in give no free parameters in one of equations')
return
end
end
%======================================================================
%== Estimation
%======================================================================
if indxPrior
%*** Obtains asymmetric prior (with no linear restrictions) with dummy observations as part of an explicit prior (i.e,
% reflected in Hpmulti and Hpinvmulti). See Forecast II, pp.69a-69b for details.
if 1 % Liquidity effect prior on both MS and MD equations.
[Pi,H0multi,Hpmulti,H0invmulti,Hpinvmulti] = fn_rnrprior_covres_dobs(nvar,q_m,options_.ms.nlags,xdgel,mu,indxDummy,hpmsmd,indxmsmdeqn);
else
[Pi,H0multi,Hpmulti,H0invmulti,Hpinvmulti] = fn_rnrprior(nvar,q_m,options_.ms.nlags,xdgel,mu);
end
%*** Combines asymmetric prior with linear restrictions
[Ptld,H0invtld,Hpinvtld] = fn_rlrprior(Ui,Vi,Pi,H0multi,Hpmulti,nvar);
%*** Obtains the posterior matrices for estimation and inference
[Pmat,H0inv,Hpinv] = fn_rlrpostr(xtx,xty,yty,Ptld,H0invtld,Hpinvtld,Ui,Vi);
else
%*** Obtain the posterior matrices for estimation and inference
[Pmat,H0inv,Hpinv] = fn_dlrpostr(xtx,xty,yty,Ui,Vi);
end
if Rform
%*** Obtain the ML estimate
A0hatinv = chol(H0inv{1}/fss); % upper triangular but lower triangular choleski
A0hat=inv(A0hatinv);
Aphat = Pmat{1}*A0hat;
else
%*** Obtain the ML estimate
% load idenml
x = 10*rand(sum(n0),1);
H0 = eye(sum(n0));
crit = 1.0e-9;
nit = 10000;
%
[fhat,xhat,grad,Hhat,itct,fcount,retcodehat] = csminwel('fn_a0freefun',x,H0,'fn_a0freegrad',crit,nit,Ui,nvar,n0,fss,H0inv);
A0hat = fn_tran_b2a(xhat,Ui,nvar,n0);
xhat = fn_tran_a2b(A0hat,Ui,nvar,n0);
[Aphat,ghat] = fn_gfmean(xhat,Pmat,Vi,nvar,ncoef,n0,np);
if indxC0Pres
Fhatur0P = Fhat; % ur: unrestriced across A0 and A+
for ki = 1:size(ixmC0Pres,1) % loop through the number of equations in which
% cross-A0-A+ restrictions occur. See St. Louis Note p.5.
ixeq = ixmC0Pres{ki}(1,1); % index for the jth equation in consideration.
Lit = Vi{ixeq}(ixmC0Pres{ki}(:,2),:); % transposed restriction matrix Li
% V_j(i,:) in f_j(i) = V_j(i,:)*g_j
ci = ixmC0Pres{ki}(:,4) .* A0hat(ixmC0Pres{ki}(:,3),ixeq);
% s * a_j(h) in the restriction f_j(i) = s * a_j(h).
LtH = Lit/Hpinv{ixeq};
HLV = LtH'/(LtH*Lit');
gihat = Vi{ixeq}'*Fhatur0P(:,ixeq);
Aphat(:,ixeq) = Vi{ixeq}*(gihat + HLV*(ci-Lit*gihat));
end
end
end
%======================================================================
%== Create matlab initialization file
%======================================================================
matlab_filename = ['matlab_',options_.ms.output_file_tag,'.prn'];
fidForC = fopen(matlab_filename,'w');
fprintf(fidForC,'\n%s\n','//== gxia: alpha parameter for gamma prior of xi ==//');
fprintf(fidForC,' %20.15f ', galp);
fprintf(fidForC, '\n\n');
fprintf(fidForC,'\n%s\n','//== gxib: beta parameter for gamma prior of xi ==//');
fprintf(fidForC,' %20.15f ', gbeta);
fprintf(fidForC, '\n\n');
fprintf(fidForC,'\n%s\n','//== glamdasig: sigma parameter for normal prior of lamda ==//');
fprintf(fidForC,' %20.15f ', sqrt(gsig2_lmdm));
fprintf(fidForC, '\n\n');
%=== lags, nvar, nStates, sample size (excluding options_.ms.nlags where, with dummyies, fss=nSample-options_.ms.nlags+ndobs).
fprintf(fidForC,'\n%s\n','//== lags, nvar, nStates, T ==//');
fprintf(fidForC,' %d %d %d %d\n\n\n',options_.ms.nlags, nvar, nStates, fss);
%=== A0hat nvar-by-nvar from the constant VAR.
fprintf(fidForC,'\n%s\n','//== A0hat: nvar-by-nvar ==//');
indxFloat = 1;
xM = A0hat;
nrows = nvar;
ncols = nvar;
fn_fprintmatrix(fidForC, xM, nrows, ncols, indxFloat)
%=== Aphat ncoef-by-nvar from the constant VAR.
%=== Each column of Aphat is in the order of [nvar variables for 1st lag, ..., nvar variables for last lag, constant term].
fprintf(fidForC,'\n%s\n','//== Aphat: ncoef(lags*nvar+1)-by-nvar ==//');
indxFloat = 1;
xM = Aphat;
nrows = ncoef;
ncols = nvar;
fn_fprintmatrix(fidForC, xM, nrows, ncols, indxFloat)
%=== n0const: nvar-by-1, whose ith element represents the number of free A0 parameters in ith equation for the case of constant parameters.
fprintf(fidForC,'\n%s\n','//== n0const: nvar-by-1 ==//');
indxFloat = 0;
xM = n0;
nrows = 1;
ncols = nvar;
fn_fprintmatrix(fidForC, xM', nrows, ncols, indxFloat)
%=== npconst: nvar-by-1, whose ith element represents the number of free A+ parameters in ith equation for the case of constant parameters.
fprintf(fidForC,'\n%s\n','//== npconst: nvar-by-1 ==//');
indxFloat = 0;
xM = np;
nrows = 1;
ncols = nvar;
fn_fprintmatrix(fidForC, xM', nrows, ncols, indxFloat)
%=== Specification
fprintf(fidForC,'\n%s','//== Specification (0=default 1=Sims-Zha 2=Random Walk) ==//');
fprintf(fidForC,'\n%d\n\n',options_.ms.specification);
%=== Uiconst: nvar-by-1 cell. In each cell, nvar-by-qi orthonormal basis for the null of the ith
% equation contemporaneous restriction matrix where qi is the number of free parameters.
% With this transformation, we have ai = Ui*bi or Ui'*ai = bi where ai is a vector
% of total original parameters and bi is a vector of free parameters. When no
% restrictions are imposed, we have Ui = I. There must be at least one free
% parameter left for the ith equation.
fprintf(fidForC,'\n%s\n','//== Uiconst: cell(nvar,1) and nvar-by-n0const(i) for the ith cell (equation) ==//');
for i_=1:nvar
fn_fprintmatrix(fidForC, Ui{i_}, nvar, n0(i_), 1);
end
%=== Viconst: nvar-by-1 cell. In each cell, k-by-ri orthonormal basis for the null of the ith
% equation lagged restriction matrix where k is a total of exogenous variables and
% ri is the number of free parameters. With this transformation, we have fi = Vi*gi
% or Vi'*fi = gi where fi is a vector of total original parameters and gi is a
% vector of free parameters. There must be at least one free parameter left for
% the ith equation.
fprintf(fidForC,'\n%s\n','//== Viconst: cell(nvar,1) and ncoef-by-n0const(i) for the ith cell (equation) ==//');
for i_=1:nvar
fn_fprintmatrix(fidForC, Vi{i_}, ncoef, np(i_), 1);
end
%=== H0barconstcell: cell(nvar,1) (equations) and n-by-n for each cell (equaiton).
%=== H0barconst: prior covariance matrix for each column of A0 under asymmetric prior (including SZ dummy obs.) with NO linear restrictions imposed yet.
fprintf(fidForC,'\n%s\n','//== H0barconstcell: cell(nvar,1) and n-by-n for the ith cell (equation) ==//');
for i_=1:nvar
fn_fprintmatrix(fidForC, H0multi(:,:,i_), nvar, nvar, 1);
end
%=== Hpbarconstcell: cell(nvar,1) (equations) and ncoef-by-ncoef for each cell (equaiton).
%=== Hpbarconst: prior covariance matrix for each column of A+ under asymmetric prior (including SZ dummy obs.) with NO linear restrictions imposed yet.
fprintf(fidForC,'\n%s\n','//== Hpbarconstcell: cell(nvar,1) and ncoef-by-ncoef for the ith cell (equation) ==//');
for i_=1:nvar
fn_fprintmatrix(fidForC, Hpmulti(:,:,i_), ncoef, ncoef, 1);
end
%=== phi: X; T-by-k; column: [nvar for 1st lag, ..., nvar for last lag, other exogenous terms, const term]
fprintf(fidForC,'\n%s\n','//== Xright -- X: T-by-ncoef ==//');
xM = phi;
nrows = fss;
ncols = ncoef;
for ki=1:nrows
for kj=1:ncols
fprintf(fidForC,' %20.15f ',xM((kj-1)*nrows+ki));
if (kj==ncols)
fprintf(fidForC,'\n');
end
end
if (ki==nrows)
fprintf(fidForC,'\n\n');
end
end
%=== y: Y: T-by-nvar where T=fss
fprintf(fidForC,'\n%s\n','//== Yleft -- Y: T-by-nvar ==//');
xM = y;
nrows = fss;
ncols = nvar;
for ki=1:nrows
for kj=1:ncols
fprintf(fidForC,' %20.15f ',xM((kj-1)*nrows+ki));
if (kj==ncols)
fprintf(fidForC,'\n');
end
end
if (ki==nrows)
fprintf(fidForC,'\n\n');
end
end
fclose(fidForC);
%======================================================================
%== Create C initialization filename
%======================================================================
ms_write_markov_file(markov_file,options_)
create_init_file = [matlab_filename,' ',markov_file,' ',options_.ms.file_tag];
[err] = ms_sbvar_create_init_file(create_init_file);
mexErrCheck('ms_sbvar_create_init_file',err);
end
|