1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
function [fval,exit_flag,ys,trend_coeff,info,Model,DynareOptions,BayesInfo,DynareResults] = non_linear_dsge_likelihood(xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults)
% Evaluates the posterior kernel of a dsge model using a non linear filter.
%@info:
%! @deftypefn {Function File} {[@var{fval},@var{exit_flag},@var{ys},@var{trend_coeff},@var{info},@var{Model},@var{DynareOptions},@var{BayesInfo},@var{DynareResults}] =} non_linear_dsge_likelihood (@var{xparam1},@var{DynareDataset},@var{DynareOptions},@var{Model},@var{EstimatedParameters},@var{BayesInfo},@var{DynareResults})
%! @anchor{dsge_likelihood}
%! @sp 1
%! Evaluates the posterior kernel of a dsge model using a non linear filter.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item xparam1
%! Vector of doubles, current values for the estimated parameters.
%! @item DynareDataset
%! Matlab's structure describing the dataset (initialized by dynare, see @ref{dataset_}).
%! @item DynareOptions
%! Matlab's structure describing the options (initialized by dynare, see @ref{options_}).
%! @item Model
%! Matlab's structure describing the Model (initialized by dynare, see @ref{M_}).
%! @item EstimatedParamemeters
%! Matlab's structure describing the estimated_parameters (initialized by dynare, see @ref{estim_params_}).
%! @item BayesInfo
%! Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}).
%! @item DynareResults
%! Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item fval
%! Double scalar, value of (minus) the likelihood.
%! @item exit_flag
%! Integer scalar, equal to zero if the routine return with a penalty (one otherwise).
%! @item ys
%! Vector of doubles, steady state level for the endogenous variables.
%! @item trend_coeffs
%! Matrix of doubles, coefficients of the deterministic trend in the measurement equation.
%! @item info
%! Integer scalar, error code.
%! @table @ @code
%! @item info==0
%! No error.
%! @item info==1
%! The model doesn't determine the current variables uniquely.
%! @item info==2
%! MJDGGES returned an error code.
%! @item info==3
%! Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
%! @item info==4
%! Blanchard & Kahn conditions are not satisfied: indeterminacy.
%! @item info==5
%! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
%! @item info==6
%! The jacobian evaluated at the deterministic steady state is complex.
%! @item info==19
%! The steadystate routine thrown an exception (inconsistent deep parameters).
%! @item info==20
%! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations).
%! @item info==21
%! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.
%! @item info==22
%! The steady has NaNs.
%! @item info==23
%! M_.params has been updated in the steadystate routine and has complex valued scalars.
%! @item info==24
%! M_.params has been updated in the steadystate routine and has some NaNs.
%! @item info==30
%! Ergodic variance can't be computed.
%! @item info==41
%! At least one parameter is violating a lower bound condition.
%! @item info==42
%! At least one parameter is violating an upper bound condition.
%! @item info==43
%! The covariance matrix of the structural innovations is not positive definite.
%! @item info==44
%! The covariance matrix of the measurement errors is not positive definite.
%! @item info==45
%! Likelihood is not a number (NaN).
%! @item info==45
%! Likelihood is a complex valued number.
%! @end table
%! @item Model
%! Matlab's structure describing the model (initialized by dynare, see @ref{M_}).
%! @item DynareOptions
%! Matlab's structure describing the options (initialized by dynare, see @ref{options_}).
%! @item BayesInfo
%! Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}).
%! @item DynareResults
%! Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}).
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{dynare_estimation_1}, @ref{mode_check}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! @ref{dynare_resolve}, @ref{lyapunov_symm}, @ref{priordens}
%! @end deftypefn
%@eod:
% Copyright (C) 2010-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR(S) stephane DOT adjemian AT univ DASH lemans DOT fr
% frederic DOT karame AT univ DASH lemans DOT fr
% Declaration of the penalty as a persistent variable.
persistent penalty
persistent init_flag
persistent restrict_variables_idx observed_variables_idx state_variables_idx mf0 mf1
persistent sample_size number_of_state_variables number_of_observed_variables number_of_structural_innovations
% Initialization of the persistent variable.
if ~nargin || isempty(penalty)
penalty = 1e8;
if ~nargin, return, end
end
if nargin==1
penalty = xparam1;
return
end
% Initialization of the returned arguments.
fval = [];
ys = [];
trend_coeff = [];
exit_flag = 1;
% Set the number of observed variables
nvobs = DynareDataset.info.nvobs;
%------------------------------------------------------------------------------
% 1. Get the structural parameters & define penalties
%------------------------------------------------------------------------------
% Return, with endogenous penalty, if some parameters are smaller than the lower bound of the prior domain.
if (DynareOptions.mode_compute~=1) && any(xparam1<BayesInfo.lb)
k = find(xparam1 < BayesInfo.lb);
fval = penalty+sum((BayesInfo.lb(k)-xparam1(k)).^2);
exit_flag = 0;
info = 41;
return
end
% Return, with endogenous penalty, if some parameters are greater than the upper bound of the prior domain.
if (DynareOptions.mode_compute~=1) && any(xparam1>BayesInfo.ub)
k = find(xparam1>BayesInfo.ub);
fval = penalty+sum((xparam1(k)-BayesInfo.ub(k)).^2);
exit_flag = 0;
info = 42;
return
end
% Get the diagonal elements of the covariance matrices for the structural innovations (Q) and the measurement error (H).
Q = Model.Sigma_e;
H = Model.H;
for i=1:EstimatedParameters.nvx
k =EstimatedParameters.var_exo(i,1);
Q(k,k) = xparam1(i)*xparam1(i);
end
offset = EstimatedParameters.nvx;
if EstimatedParameters.nvn
for i=1:EstimatedParameters.nvn
k = EstimatedParameters.var_endo(i,1);
H(k,k) = xparam1(i+offset)*xparam1(i+offset);
end
offset = offset+EstimatedParameters.nvn;
else
H = zeros(nvobs);
end
% Get the off-diagonal elements of the covariance matrix for the structural innovations. Test if Q is positive definite.
if EstimatedParameters.ncx
for i=1:EstimatedParameters.ncx
k1 =EstimatedParameters.corrx(i,1);
k2 =EstimatedParameters.corrx(i,2);
Q(k1,k2) = xparam1(i+offset)*sqrt(Q(k1,k1)*Q(k2,k2));
Q(k2,k1) = Q(k1,k2);
end
% Try to compute the cholesky decomposition of Q (possible iff Q is positive definite)
[CholQ,testQ] = chol(Q);
if testQ
% The variance-covariance matrix of the structural innovations is not definite positive. We have to compute the eigenvalues of this matrix in order to build the endogenous penalty.
a = diag(eig(Q));
k = find(a < 0);
if k > 0
fval = penalty+sum(-a(k));
exit_flag = 0;
info = 43;
return
end
end
offset = offset+EstimatedParameters.ncx;
end
% Get the off-diagonal elements of the covariance matrix for the measurement errors. Test if H is positive definite.
if EstimatedParameters.ncn
for i=1:EstimatedParameters.ncn
k1 = DynareOptions.lgyidx2varobs(EstimatedParameters.corrn(i,1));
k2 = DynareOptions.lgyidx2varobs(EstimatedParameters.corrn(i,2));
H(k1,k2) = xparam1(i+offset)*sqrt(H(k1,k1)*H(k2,k2));
H(k2,k1) = H(k1,k2);
end
% Try to compute the cholesky decomposition of H (possible iff H is positive definite)
[CholH,testH] = chol(H);
if testH
% The variance-covariance matrix of the measurement errors is not definite positive. We have to compute the eigenvalues of this matrix in order to build the endogenous penalty.
a = diag(eig(H));
k = find(a < 0);
if k > 0
fval = penalty+sum(-a(k));
exit_flag = 0;
info = 44;
return
end
end
offset = offset+EstimatedParameters.ncn;
end
% Update estimated structural parameters in Mode.params.
if EstimatedParameters.np > 0
Model.params(EstimatedParameters.param_vals(:,1)) = xparam1(offset+1:end);
end
% Update Model.Sigma_e and Model.H.
Model.Sigma_e = Q;
Model.H = H;
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
% Linearize the model around the deterministic sdteadystate and extract the matrices of the state equation (T and R).
[T,R,SteadyState,info,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict');
if info(1) == 1 || info(1) == 2 || info(1) == 5
fval = penalty+1;
exit_flag = 0;
return
elseif info(1) == 3 || info(1) == 4 || info(1)==6 ||info(1) == 19 || info(1) == 20 || info(1) == 21
fval = penalty+info(2);
exit_flag = 0;
return
end
% Define a vector of indices for the observed variables. Is this really usefull?...
BayesInfo.mf = BayesInfo.mf1;
% Define the deterministic linear trend of the measurement equation.
if DynareOptions.noconstant
constant = zeros(nvobs,1);
else
if DynareOptions.loglinear
constant = log(SteadyState(BayesInfo.mfys));
else
constant = SteadyState(BayesInfo.mfys);
end
end
% Define the deterministic linear trend of the measurement equation.
if BayesInfo.with_trend
trend_coeff = zeros(DynareDataset.info.nvobs,1);
t = DynareOptions.trend_coeffs;
for i=1:length(t)
if ~isempty(t{i})
trend_coeff(i) = evalin('base',t{i});
end
end
trend = repmat(constant,1,DynareDataset.info.ntobs)+trend_coeff*[1:DynareDataset.info.ntobs];
else
trend = repmat(constant,1,DynareDataset.info.ntobs);
end
% Get needed informations for kalman filter routines.
start = DynareOptions.presample+1;
np = size(T,1);
mf = BayesInfo.mf;
Y = transpose(DynareDataset.rawdata);
%------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
%------------------------------------------------------------------------------
% Get decision rules and transition equations.
dr = DynareResults.dr;
% Set persistent variables (first call).
if isempty(init_flag)
mf0 = BayesInfo.mf0;
mf1 = BayesInfo.mf1;
restrict_variables_idx = BayesInfo.restrict_var_list;
observed_variables_idx = restrict_variables_idx(mf1);
state_variables_idx = restrict_variables_idx(mf0);
sample_size = size(Y,2);
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(Q);
init_flag = 1;
end
ReducedForm.ghx = dr.ghx(restrict_variables_idx,:);
ReducedForm.ghu = dr.ghu(restrict_variables_idx,:);
ReducedForm.ghxx = dr.ghxx(restrict_variables_idx,:);
ReducedForm.ghuu = dr.ghuu(restrict_variables_idx,:);
ReducedForm.ghxu = dr.ghxu(restrict_variables_idx,:);
ReducedForm.steadystate = dr.ys(dr.order_var(restrict_variables_idx));
ReducedForm.constant = ReducedForm.steadystate + .5*dr.ghs2(restrict_variables_idx);
ReducedForm.state_variables_steady_state = dr.ys(dr.order_var(state_variables_idx));
ReducedForm.Q = Q;
ReducedForm.H = H;
ReducedForm.mf0 = mf0;
ReducedForm.mf1 = mf1;
% Set initial condition.
switch DynareOptions.particle.initialization
case 1% Initial state vector covariance is the ergodic variance associated to the first order Taylor-approximation of the model.
StateVectorMean = ReducedForm.constant(mf0);
StateVectorVariance = lyapunov_symm(ReducedForm.ghx(mf0,:),ReducedForm.ghu(mf0,:)*ReducedForm.Q*ReducedForm.ghu(mf0,:)',1e-12,1e-12);
case 2% Initial state vector covariance is a monte-carlo based estimate of the ergodic variance (consistent with a k-order Taylor-approximation of the model).
StateVectorMean = ReducedForm.constant(mf0);
old_DynareOptionsperiods = DynareOptions.periods;
DynareOptions.periods = 5000;
y_ = simult(oo_.steady_state, dr);
y_ = y_(state_variables_idx,2001:5000);
StateVectorVariance = cov(y_');
DynareOptions.periods = old_DynareOptionsperiods;
clear('old_DynareOptionsperiods','y_');
case 3% Initial state vector covariance is a diagonal matrix.
StateVectorMean = ReducedForm.constant(mf0);
StateVectorVariance = DynareOptions.particle.initial_state_prior_std*eye(number_of_state_variables);
otherwise
error('Unknown initialization option!')
end
ReducedForm.StateVectorMean = StateVectorMean;
ReducedForm.StateVectorVariance = StateVectorVariance;
%------------------------------------------------------------------------------
% 4. Likelihood evaluation
%------------------------------------------------------------------------------
DynareOptions.warning_for_steadystate = 0;
LIK = feval(DynareOptions.particle.algorithm,ReducedForm,Y,[],DynareOptions);
if imag(LIK)
likelihood = penalty;
exit_flag = 0;
elseif isnan(LIK)
likelihood = penalty;
exit_flag = 0;
else
likelihood = LIK;
end
DynareOptions.warning_for_steadystate = 1;
% ------------------------------------------------------------------------------
% Adds prior if necessary
% ------------------------------------------------------------------------------
lnprior = priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
fval = (likelihood-lnprior);
|