File: osr_obj.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (75 lines) | stat: -rw-r--r-- 1,635 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function [loss,vx,junk,exit_flag]=osr_obj(x,i_params,i_var,weights);
% objective function for optimal simple rules (OSR)

% Copyright (C) 2005-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ oo_ options_ optimal_Q_ it_
%  global ys_ Sigma_e_ endo_nbr exo_nbr optimal_Q_ it_ ykmin_ options_

junk = [];
exit_flag = 1;
vx = [];
% set parameters of the policiy rule
M_.params(i_params) = x;

% don't change below until the part where the loss function is computed
it_ = M_.maximum_lag+1;
[dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);

switch info(1)
  case 1
    loss = 1e8;
    return
  case 2
    loss = 1e8*min(1e3,info(2));
    return
  case 3
    loss = 1e8*min(1e3,info(2));
    return
  case 4
    loss = 1e8*min(1e3,info(2));
    return
  case 5
    loss = 1e8;
    return
  case 6
    loss = 1e8*min(1e3,info(2));
    return
  case 20
    loss = 1e8*min(1e3,info(2));
    return
  otherwise
end

vx = get_variance_of_endogenous_variables(dr,i_var);
loss = weights(:)'*vx(:);