1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
function results = prior_sampler(drsave,M_,bayestopt_,options_,oo_,estim_params_)
% This function builds a (big) prior sample.
%
% INPUTS
% drsave [integer] Scalar. If equal to 1, then dr structure is saved with each prior draw.
% M_ [structure] Model description.
% bayestopt_ [structure] Prior distribution description.
% options_ [structure] Global options of Dynare.
%
% OUTPUTS:
% results [structure] Various statistics.
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2009-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Initialization.
prior_draw(1);
PriorDirectoryName = CheckPath('prior/draws',M_.dname);
work = ~drsave;
iteration = 0;
loop_indx = 0;
file_indx = [];
count_bk_indeterminacy = 0;
count_bk_unstability = 0;
count_bk_singularity = 0;
count_static_var_def = 0;
count_no_steadystate = 0;
count_steadystate_file_exit = 0;
count_dll_problem = 0;
count_complex_jacobian = 0;
count_complex_steadystate = 0;
count_nan_steadystate = 0;
count_nan_params = 0;
count_complex_params = 0;
count_unknown_problem = 0;
NumberOfSimulations = options_.prior_mc;
NumberOfParameters = length(bayestopt_.p1);
NumberOfEndogenousVariables = size(M_.endo_names,1);
NumberOfElementsPerFile = ceil(options_.MaxNumberOfBytes/NumberOfParameters/NumberOfEndogenousVariables/8) ;
if NumberOfSimulations <= NumberOfElementsPerFile
TableOfInformations = [ 1 , NumberOfSimulations , 1] ;
else
NumberOfFiles = ceil(NumberOfSimulations/NumberOfElementsPerFile) ;
NumberOfElementsInTheLastFile = NumberOfSimulations - NumberOfElementsPerFile*(NumberOfFiles-1) ;
TableOfInformations = NaN(NumberOfFiles,3) ;
TableOfInformations(:,1) = transpose(1:NumberOfFiles) ;
TableOfInformations(1:NumberOfFiles-1,2) = NumberOfElementsPerFile*ones(NumberOfFiles-1,1) ;
TableOfInformations(NumberOfFiles,2) = NumberOfElementsInTheLastFile ;
TableOfInformations(1,3) = 1;
TableOfInformations(2:end,3) = cumsum(TableOfInformations(1:end-1,2))+1;
end
pdraws = cell(TableOfInformations(1,2),drsave+1) ;
sampled_prior_expectation = zeros(NumberOfParameters,1);
sampled_prior_covariance = zeros(NumberOfParameters,NumberOfParameters);
file_line_number = 0;
file_indx_number = 0;
% Simulations.
while iteration < NumberOfSimulations
loop_indx = loop_indx+1;
params = prior_draw();
M_ = set_all_parameters(params,estim_params_,M_);
[dr,INFO,M_,options_,oo_] = resol(work,M_,options_,oo_);
switch INFO(1)
case 0
file_line_number = file_line_number + 1 ;
iteration = iteration + 1;
pdraws(file_line_number,1) = {params};
if drsave
pdraws(file_line_number,2) = {dr};
end
[sampled_prior_expectation,sampled_prior_covariance] = ...
recursive_prior_moments(sampled_prior_expectation,sampled_prior_covariance,params,iteration);
case 1
count_static_undefined = count_static_undefined + 1;
case 2
count_dll_problem = count_dll_problem + 1;
case 3
count_bk_unstability = count_bk_unstability + 1 ;
case 4
count_bk_indeterminacy = count_bk_indeterminacy + 1 ;
case 5
count_bk_singularity = count_bk_singularity + 1 ;
case 20
count_no_steadystate = count_no_steadystate + 1 ;
case 19
count_steadystate_file_exit = count_steadystate_file_exit + 1 ;
case 6
count_complex_jacobian = count_complex_jacobian + 1 ;
case 21
count_complex_steadystate = count_complex_steadystate + 1 ;
case 22
count_nan_steadystate = count_nan_steadystate + 1 ;
case 23
count_complex_params = count_complex_params + 1 ;
case 24
count_nan_params = count_nan_params + 1 ;
otherwise
count_unknown_problem = count_unknown_problem + 1 ;
end
if ( file_line_number==TableOfInformations(file_indx_number+1,2) )
file_indx_number = file_indx_number + 1;
save([ PriorDirectoryName '/prior_draws' int2str(file_indx_number) '.mat' ],'pdraws');
if file_indx_number<NumberOfFiles
pdraws = cell(TableOfInformations(file_indx_number+1,2),drsave+1);
end
file_line_number = 0;
end
end
% Get informations about BK conditions and other things...
results.bk.indeterminacy_share = count_bk_indeterminacy/loop_indx;
results.bk.unstability_share = count_bk_unstability/loop_indx;
results.bk.singularity_share = count_bk_singularity/loop_indx;
results.dll.problem_share = count_dll_problem/loop_indx;
results.ss.problem_share = count_no_steadystate/loop_indx;
results.ss.complex_share = count_complex_steadystate/loop_indx;
results.ass.problem_share = count_steadystate_file_exit/loop_indx;
results.jacobian.problem_share = count_complex_jacobian/loop_indx;
results.garbage_share = ...
results.bk.indeterminacy_share + ...
results.bk.unstability_share + ...
results.bk.singularity_share + ...
results.dll.problem_share + ...
results.ss.problem_share + ...
results.ass.problem_share + ...
results.jacobian.problem_share + ...
count_unknown_problem/loop_indx ;
results.prior.mean = sampled_prior_expectation;
results.prior.variance = sampled_prior_covariance;
results.prior.mass = 1-results.garbage_share;
function [mu,sigma] = recursive_prior_moments(m0,s0,newobs,iter)
% Recursive estimation of order one and two moments (expectation and
% covariance matrix). newobs should be a row vector. I do not use the
% function recursive_moments here, because this function is to be used when
% newobs is a 2D array.
m1 = m0 + (newobs'-m0)/iter;
qq = m1*m1';
s1 = s0 + ( (newobs'*newobs-qq-s0) + (iter-1)*(m0*m0'-qq') )/iter;
mu = m1;
sigma = s1;
|