File: resol.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (122 lines) | stat: -rw-r--r-- 3,773 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
function [dr,info,M,options,oo] = resol(check_flag,M,options,oo)

%@info:
%! @deftypefn {Function File} {[@var{dr},@var{info},@var{M},@var{options},@var{oo}] =} resol (@var{check_flag},@var{M},@var{options},@var{oo})
%! @anchor{resol}
%! @sp 1
%! Computes first and second order reduced form of the DSGE model.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item check_flag
%! Integer scalar, equal to 0 if all the approximation is required, positive if only the eigenvalues are to be computed.
%! @item M
%! Matlab's structure describing the model (initialized by @code{dynare}).
%! @item options
%! Matlab's structure describing the options (initialized by @code{dynare}).
%! @item oo
%! Matlab's structure gathering the results (initialized by @code{dynare}).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item dr
%! Matlab's structure describing the reduced form solution of the model.
%! @item info
%! Integer scalar, error code.
%! @sp 1
%! @table @ @code
%! @item info==0
%! No error.
%! @item info==1
%! The model doesn't determine the current variables uniquely.
%! @item info==2
%! MJDGGES returned an error code.
%! @item info==3
%! Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
%! @item info==4
%! Blanchard & Kahn conditions are not satisfied: indeterminacy.
%! @item info==5
%! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
%! @item info==6
%! The jacobian evaluated at the deterministic steady state is complex.
%! @item info==19
%! The steadystate routine thrown an exception (inconsistent deep parameters).
%! @item info==20
%! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations).
%! @item info==21
%! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.
%! @item info==22
%! The steady has NaNs.
%! @item info==23
%! M_.params has been updated in the steadystate routine and has complex valued scalars.
%! @item info==24
%! M_.params has been updated in the steadystate routine and has some NaNs.
%! @item info==30
%! Ergodic variance can't be computed.
%! @end table
%! @sp 1
%! @item M
%! Matlab's structure describing the model (initialized by @code{dynare}).
%! @item options
%! Matlab's structure describing the options (initialized by @code{dynare}).
%! @item oo
%! Matlab's structure gathering the results (initialized by @code{dynare}).
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{dynare_estimation_init}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! None.
%! @end deftypefn
%@eod:

% Copyright (C) 2001-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if isfield(oo,'dr');
    dr = oo.dr;
end

info = 0;

it_ = M.maximum_lag + 1 ;

if M.exo_nbr == 0
    oo.exo_steady_state = [] ;
end

[dr.ys,M.params,info] = evaluate_steady_state(oo.steady_state,M,options,oo,0);

if info(1)
    return
end

if options.block
    [dr,info,M,options,oo] = dr_block(dr,check_flag,M,options,oo);
    oo.dr = dr;
else
    [dr,info] = stochastic_solvers(dr,check_flag,M,options,oo);
    oo.dr = dr;
end