1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
function sim1()
% function sim1
% Performs deterministic simulations with lead or lag on one period.
% Uses sparse matrices.
%
% INPUTS
% ...
% OUTPUTS
% ...
% ALGORITHM
% ...
%
% SPECIAL REQUIREMENTS
% None.
% Copyright (C) 1996-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ oo_
lead_lag_incidence = M_.lead_lag_incidence;
ny = M_.endo_nbr;
max_lag = M_.maximum_endo_lag;
nyp = nnz(lead_lag_incidence(1,:)) ;
iyp = find(lead_lag_incidence(1,:)>0) ;
ny0 = nnz(lead_lag_incidence(2,:)) ;
iy0 = find(lead_lag_incidence(2,:)>0) ;
nyf = nnz(lead_lag_incidence(3,:)) ;
iyf = find(lead_lag_incidence(3,:)>0) ;
nd = nyp+ny0+nyf;
nrc = nyf+1 ;
isp = [1:nyp] ;
is = [nyp+1:ny+nyp] ;
isf = iyf+nyp ;
isf1 = [nyp+ny+1:nyf+nyp+ny+1] ;
stop = 0 ;
iz = [1:ny+nyp+nyf];
periods = options_.periods
steady_state = oo_.steady_state;
params = M_.params;
endo_simul = oo_.endo_simul;
exo_simul = oo_.exo_simul;
i_cols_1 = nonzeros(lead_lag_incidence(2:3,:)');
i_cols_A1 = find(lead_lag_incidence(2:3,:)');
i_cols_T = nonzeros(lead_lag_incidence(1:2,:)');
i_cols_j = 1:nd;
i_upd = ny+(1:periods*ny);
Y = endo_simul(:);
disp (['-----------------------------------------------------']) ;
disp (['MODEL SIMULATION :']) ;
fprintf('\n') ;
model_dynamic = str2func([M_.fname,'_dynamic']);
z = Y(find(lead_lag_incidence'));
[d1,jacobian] = model_dynamic(z,oo_.exo_simul, params, ...
steady_state,2);
A = sparse([],[],[],periods*ny,periods*ny,periods*nnz(jacobian));
res = zeros(periods*ny,1);
h1 = clock ;
for iter = 1:options_.maxit_
h2 = clock ;
i_rows = 1:ny;
i_cols = find(lead_lag_incidence');
i_cols_A = i_cols;
for it = 2:(periods+1)
[d1,jacobian] = model_dynamic(Y(i_cols),exo_simul, params, ...
steady_state,it);
if it == 2
A(i_rows,i_cols_A1) = jacobian(:,i_cols_1);
elseif it == periods+1
A(i_rows,i_cols_A(i_cols_T)) = jacobian(:,i_cols_T);
else
A(i_rows,i_cols_A) = jacobian(:,i_cols_j);
end
res(i_rows) = d1;
i_rows = i_rows + ny;
i_cols = i_cols + ny;
if it > 2
i_cols_A = i_cols_A + ny;
end
end
err = max(abs(res));
if err < options_.dynatol.f
stop = 1 ;
fprintf('\n') ;
disp([' Total time of simulation :' num2str(etime(clock,h1))]) ;
fprintf('\n') ;
disp([' Convergency obtained.']) ;
fprintf('\n') ;
oo_.deterministic_simulation.status = 1;% Convergency obtained.
oo_.deterministic_simulation.error = err;
oo_.deterministic_simulation.iterations = iter;
oo_.endo_simul = reshape(Y,ny,periods+2);
break
end
dy = -A\res;
Y(i_upd) = Y(i_upd) + dy;
end
if ~stop
fprintf('\n') ;
disp([' Total time of simulation :' num2str(etime(clock,h1))]) ;
fprintf('\n') ;
disp(['WARNING : maximum number of iterations is reached (modify options_.maxit_).']) ;
fprintf('\n') ;
oo_.deterministic_simulation.status = 0;% more iterations are needed.
oo_.deterministic_simulation.error = err;
oo_.deterministic_simulation.errors = c/abs(err);
oo_.deterministic_simulation.iterations = options_.maxit_;
end
disp (['-----------------------------------------------------']) ;
|