File: sim1.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (148 lines) | stat: -rw-r--r-- 4,043 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
function sim1()
% function sim1
% Performs deterministic simulations with lead or lag on one period.
% Uses sparse matrices.
%
% INPUTS
%   ...
% OUTPUTS
%   ...
% ALGORITHM
%   ...
%
% SPECIAL REQUIREMENTS
%   None.

% Copyright (C) 1996-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ options_ oo_

lead_lag_incidence = M_.lead_lag_incidence;

ny = M_.endo_nbr;

max_lag = M_.maximum_endo_lag;

nyp = nnz(lead_lag_incidence(1,:)) ;
iyp = find(lead_lag_incidence(1,:)>0) ;
ny0 = nnz(lead_lag_incidence(2,:)) ;
iy0 = find(lead_lag_incidence(2,:)>0) ;
nyf = nnz(lead_lag_incidence(3,:)) ;
iyf = find(lead_lag_incidence(3,:)>0) ;

nd = nyp+ny0+nyf;
nrc = nyf+1 ;
isp = [1:nyp] ;
is = [nyp+1:ny+nyp] ;
isf = iyf+nyp ;
isf1 = [nyp+ny+1:nyf+nyp+ny+1] ;
stop = 0 ;
iz = [1:ny+nyp+nyf];

periods = options_.periods
steady_state = oo_.steady_state;
params = M_.params;
endo_simul = oo_.endo_simul;
exo_simul = oo_.exo_simul;
i_cols_1 = nonzeros(lead_lag_incidence(2:3,:)');
i_cols_A1 = find(lead_lag_incidence(2:3,:)');
i_cols_T = nonzeros(lead_lag_incidence(1:2,:)');
i_cols_j = 1:nd;
i_upd = ny+(1:periods*ny);

Y = endo_simul(:);

disp (['-----------------------------------------------------']) ;
disp (['MODEL SIMULATION :']) ;
fprintf('\n') ;


model_dynamic = str2func([M_.fname,'_dynamic']);
z = Y(find(lead_lag_incidence'));
[d1,jacobian] = model_dynamic(z,oo_.exo_simul, params, ...
                              steady_state,2);

A = sparse([],[],[],periods*ny,periods*ny,periods*nnz(jacobian));
res = zeros(periods*ny,1);

    
h1 = clock ;
for iter = 1:options_.maxit_
    h2 = clock ;
    
    i_rows = 1:ny;
    i_cols = find(lead_lag_incidence');
    i_cols_A = i_cols;
    
    for it = 2:(periods+1)

        [d1,jacobian] = model_dynamic(Y(i_cols),exo_simul, params, ...
                                      steady_state,it);
        if it == 2
            A(i_rows,i_cols_A1) = jacobian(:,i_cols_1);
        elseif it == periods+1
            A(i_rows,i_cols_A(i_cols_T)) = jacobian(:,i_cols_T);
        else
            A(i_rows,i_cols_A) = jacobian(:,i_cols_j);
        end

        res(i_rows) = d1;
        
        i_rows = i_rows + ny;
        i_cols = i_cols + ny;
        if it > 2
            i_cols_A = i_cols_A + ny;
        end
    end
        
    err = max(abs(res));
    
    if err < options_.dynatol.f
        stop = 1 ;
        fprintf('\n') ;
        disp([' Total time of simulation        :' num2str(etime(clock,h1))]) ;
        fprintf('\n') ;
        disp([' Convergency obtained.']) ;
        fprintf('\n') ;
        oo_.deterministic_simulation.status = 1;% Convergency obtained.
        oo_.deterministic_simulation.error = err;
        oo_.deterministic_simulation.iterations = iter;
        oo_.endo_simul = reshape(Y,ny,periods+2);
        break
    end

    dy = -A\res;
    
    Y(i_upd) =   Y(i_upd) + dy;

end


if ~stop
    fprintf('\n') ;
    disp(['     Total time of simulation        :' num2str(etime(clock,h1))]) ;
    fprintf('\n') ;
    disp(['WARNING : maximum number of iterations is reached (modify options_.maxit_).']) ;
    fprintf('\n') ;
    oo_.deterministic_simulation.status = 0;% more iterations are needed.
    oo_.deterministic_simulation.error = err;
    oo_.deterministic_simulation.errors = c/abs(err);    
    oo_.deterministic_simulation.iterations = options_.maxit_;
end
disp (['-----------------------------------------------------']) ;