1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
function y_=simult_(y0,dr,ex_,iorder)
% Simulates the model using a perturbation approach, given the path for the exogenous variables and the
% decision rules.
%
% INPUTS
% y0 [double] n*1 vector, initial value (n is the number of declared endogenous variables plus the number
% of auxilliary variables for lags and leads)
% dr [struct] matlab's structure where the reduced form solution of the model is stored.
% ex_ [double] T*q matrix of innovations.
% iorder [integer] order of the taylor approximation.
%
% OUTPUTS
% y_ [double] n*(T+1) time series for the endogenous variables.
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2001-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_
iter = size(ex_,1);
y_ = zeros(size(y0,1),iter+M_.maximum_lag);
y_(:,1) = y0;
% stoch_simul sets k_order_solver=1 if order=3, but does so only locally, so we
% have to do it here also
if options_.order == 3
options_.k_order_solver = 1;
end
if ~options_.k_order_solver
if iorder==1
y_(:,1) = y_(:,1)-dr.ys;
end
end
if options_.k_order_solver% Call dynare++ routines.
ex_ = [zeros(1,M_.exo_nbr); ex_];
switch options_.order
case 1
[err, y_] = dynare_simul_(1,dr.nstatic,dr.npred-dr.nboth,dr.nboth,dr.nfwrd,M_.exo_nbr, ...
y_(dr.order_var,1),ex_',M_.Sigma_e,options_.DynareRandomStreams.seed,dr.ys(dr.order_var),...
zeros(M_.endo_nbr,1),dr.g_1);
case 2
[err, y_] = dynare_simul_(2,dr.nstatic,dr.npred-dr.nboth,dr.nboth,dr.nfwrd,M_.exo_nbr, ...
y_(dr.order_var,1),ex_',M_.Sigma_e,options_.DynareRandomStreams.seed,dr.ys(dr.order_var),dr.g_0, ...
dr.g_1,dr.g_2);
case 3
[err, y_] = dynare_simul_(3,dr.nstatic,dr.npred-dr.nboth,dr.nboth,dr.nfwrd,M_.exo_nbr, ...
y_(dr.order_var,1),ex_',M_.Sigma_e,options_.DynareRandomStreams.seed,dr.ys(dr.order_var),dr.g_0, ...
dr.g_1,dr.g_2,dr.g_3);
otherwise
error(['order = ' int2str(order) ' isn''t supported'])
end
mexErrCheck('dynare_simul_', err);
y_(dr.order_var,:) = y_;
else
if options_.block
if M_.maximum_lag > 0
k2 = dr.state_var;
else
k2 = [];
end;
order_var = 1:M_.endo_nbr;
dr.order_var = order_var;
else
k2 = dr.kstate(find(dr.kstate(:,2) <= M_.maximum_lag+1),[1 2]);
k2 = k2(:,1)+(M_.maximum_lag+1-k2(:,2))*M_.endo_nbr;
order_var = dr.order_var;
end;
switch iorder
case 1
if isempty(dr.ghu)% For (linearized) deterministic models.
for i = 2:iter+M_.maximum_lag
yhat = y_(order_var(k2),i-1);
y_(order_var,i) = dr.ghx*yhat;
end
elseif isempty(dr.ghx)% For (linearized) purely forward variables (no state variables).
y_(dr.order_var,:) = dr.ghu*transpose(ex_);
else
epsilon = dr.ghu*transpose(ex_);
for i = 2:iter+M_.maximum_lag
yhat = y_(order_var(k2),i-1);
y_(order_var,i) = dr.ghx*yhat + epsilon(:,i-1);
end
end
y_ = bsxfun(@plus,y_,dr.ys);
case 2
constant = dr.ys(order_var)+.5*dr.ghs2;
if options_.pruning
y__ = y0;
for i = 2:iter+M_.maximum_lag
yhat1 = y__(order_var(k2))-dr.ys(order_var(k2));
yhat2 = y_(order_var(k2),i-1)-dr.ys(order_var(k2));
epsilon = ex_(i-1,:)';
[abcOut1, err] = A_times_B_kronecker_C(.5*dr.ghxx,yhat1,options_.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
[abcOut2, err] = A_times_B_kronecker_C(.5*dr.ghuu,epsilon,options_.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
[abcOut3, err] = A_times_B_kronecker_C(dr.ghxu,yhat1,epsilon,options_.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
y_(order_var,i) = constant + dr.ghx*yhat2 + dr.ghu*epsilon ...
+ abcOut1 + abcOut2 + abcOut3;
y__(order_var) = dr.ys(order_var) + dr.ghx*yhat1 + dr.ghu*epsilon;
end
else
for i = 2:iter+M_.maximum_lag
yhat = y_(order_var(k2),i-1)-dr.ys(order_var(k2));
epsilon = ex_(i-1,:)';
[abcOut1, err] = A_times_B_kronecker_C(.5*dr.ghxx,yhat,options_.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
[abcOut2, err] = A_times_B_kronecker_C(.5*dr.ghuu,epsilon,options_.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
[abcOut3, err] = A_times_B_kronecker_C(dr.ghxu,yhat,epsilon,options_.threads.kronecker.A_times_B_kronecker_C);
mexErrCheck('A_times_B_kronecker_C', err);
y_(dr.order_var,i) = constant + dr.ghx*yhat + dr.ghu*epsilon ...
+ abcOut1 + abcOut2 + abcOut3;
end
end
end
end
|