File: stochastic_solvers.m

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (206 lines) | stat: -rw-r--r-- 7,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
function [dr,info] = stochastic_solvers(dr,task,M_,options_,oo_)
% function [dr,info,M_,options_,oo_] = stochastic_solvers(dr,task,M_,options_,oo_)
% computes the reduced form solution of a rational expectation model (first or second order
% approximation of the stochastic model around the deterministic steady state). 
%
% INPUTS
%   dr         [matlab structure] Decision rules for stochastic simulations.
%   task       [integer]          if task = 0 then dr1 computes decision rules.
%                                 if task = 1 then dr1 computes eigenvalues.
%   M_         [matlab structure] Definition of the model.           
%   options_   [matlab structure] Global options.
%   oo_        [matlab structure] Results 
%    
% OUTPUTS
%   dr         [matlab structure] Decision rules for stochastic simulations.
%   info       [integer]          info=1: the model doesn't define current variables uniquely
%                                 info=2: problem in mjdgges.dll info(2) contains error code. 
%                                 info=3: BK order condition not satisfied info(2) contains "distance"
%                                         absence of stable trajectory.
%                                 info=4: BK order condition not satisfied info(2) contains "distance"
%                                         indeterminacy.
%                                 info=5: BK rank condition not satisfied.
%                                 info=6: The jacobian matrix evaluated at the steady state is complex.        
%  
% ALGORITHM
%   ...
%    
% SPECIAL REQUIREMENTS
%   none.
%  

% Copyright (C) 1996-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

info = 0;

if (options_.aim_solver == 1) && (options_.order > 1)
        error('Option "aim_solver" is incompatible with order >= 2')
end

if options_.k_order_solver;
    if options_.risky_steadystate
        [dr,info] = dyn_risky_steadystate_solver(oo_.steady_state,M_,dr, ...
                                             options_,oo_);
    else
        dr = set_state_space(dr,M_);
        [dr,info] = k_order_pert(dr,M_,options_,oo_);
    end
    return;
end

klen = M_.maximum_lag + M_.maximum_lead + 1;
exo_simul = [repmat(oo_.exo_steady_state',klen,1) repmat(oo_.exo_det_steady_state',klen,1)];
iyv = M_.lead_lag_incidence';
iyv = iyv(:);
iyr0 = find(iyv) ;
it_ = M_.maximum_lag + 1 ;

if M_.exo_nbr == 0
    oo_.exo_steady_state = [] ;
end

it_ = M_.maximum_lag + 1;
z = repmat(dr.ys,1,klen);
if options_.order == 1
    if (options_.bytecode)
        [chck, junk, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ...
                                        M_.params, dr.ys, 1);
        jacobia_ = [loc_dr.g1 loc_dr.g1_x loc_dr.g1_xd];
    else
        [junk,jacobia_] = feval([M_.fname '_dynamic'],z(iyr0),exo_simul, ...
                            M_.params, dr.ys, it_);
    end;
elseif options_.order == 2
    if (options_.bytecode)
        [chck, junk, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ...
                            M_.params, dr.ys, 1);
        jacobia_ = [loc_dr.g1 loc_dr.g1_x];
    else
        [junk,jacobia_,hessian1] = feval([M_.fname '_dynamic'],z(iyr0),...
                                         exo_simul, ...
                                         M_.params, dr.ys, it_);
    end;
    if options_.use_dll
        % In USE_DLL mode, the hessian is in the 3-column sparse representation
        hessian1 = sparse(hessian1(:,1), hessian1(:,2), hessian1(:,3), ...
                          size(jacobia_, 1), size(jacobia_, 2)*size(jacobia_, 2));
    end
end

if options_.debug
    save([M_.fname '_debug.mat'],'jacobia_')
end

if ~isreal(jacobia_)
    if max(max(abs(imag(jacobia_)))) < 1e-15
        jacobia_ = real(jacobia_);
    else
        info(1) = 6;
        info(2) = sum(sum(imag(jacobia_).^2));
        return
    end
end

kstate = dr.kstate;
kad = dr.kad;
kae = dr.kae;
nstatic = dr.nstatic;
nfwrd = dr.nfwrd;
npred = dr.npred;
nboth = dr.nboth;
nfwrds = nfwrd+nboth;
order_var = dr.order_var;
nd = size(kstate,1);
nz = nnz(M_.lead_lag_incidence);

sdyn = M_.endo_nbr - nstatic;

[junk,cols_b,cols_j] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+1, ...
                                                  order_var));
b = zeros(M_.endo_nbr,M_.endo_nbr);
b(:,cols_b) = jacobia_(:,cols_j);

if M_.maximum_endo_lead == 0
    % backward models: simplified code exist only at order == 1
    if options_.order == 1
        [k1,junk,k2] = find(kstate(:,4));
        dr.ghx(:,k1) = -b\jacobia_(:,k2); 
        if M_.exo_nbr
            dr.ghu =  -b\jacobia_(:,nz+1:end); 
        end
        dr.eigval = eig(transition_matrix(dr));
        dr.rank = 0;
        if any(abs(dr.eigval) > options_.qz_criterium)
            temp = sort(abs(dr.eigval));
            nba = nnz(abs(dr.eigval) > options_.qz_criterium);
            temp = temp(nd-nba+1:nd)-1-options_.qz_criterium;
            info(1) = 3;
            info(2) = temp'*temp;
        end
    else
        error(['2nd and 3rd order approximation not implemented for purely ' ...
               'backward models'])
    end
elseif options_.risky_steadystate
    [dr,info] = dyn_risky_steadystate_solver(oo_.steady_state,M_,dr, ...
                                             options_,oo_);
else
    % If required, use AIM solver if not check only
    if (options_.aim_solver == 1) && (task == 0)
        [dr,info] = AIM_first_order_solver(jacobia_,M_,dr,options_.qz_criterium);

    else  % use original Dynare solver
        [dr,info] = dyn_first_order_solver(jacobia_,M_,dr,options_,task);
        if info(1) || task
            return;
        end
    end

    %exogenous deterministic variables
    if M_.exo_det_nbr > 0
        f1 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+2:end,order_var))));
        f0 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var))));
        fudet = sparse(jacobia_(:,nz+M_.exo_nbr+1:end));
        M1 = inv(f0+[zeros(M_.endo_nbr,nstatic) f1*dr.gx zeros(M_.endo_nbr,nfwrds-nboth)]);
        M2 = M1*f1;
        dr.ghud = cell(M_.exo_det_length,1);
        dr.ghud{1} = -M1*fudet;
        for i = 2:M_.exo_det_length
            dr.ghud{i} = -M2*dr.ghud{i-1}(end-nfwrds+1:end,:);
        end
    end

    if options_.order > 1
        % Second order
        dr = dyn_second_order_solver(jacobia_,hessian1,dr,M_,...
                                     options_.threads.kronecker.A_times_B_kronecker_C,...
                                     options_.threads.kronecker.sparse_hessian_times_B_kronecker_C);
    end
end

if options_.loglinear == 1
    % this needs to be extended for order=2,3
    k = find(dr.kstate(:,2) <= M_.maximum_endo_lag+1);
    klag = dr.kstate(k,[1 2]);
    k1 = dr.order_var;
    
    dr.ghx = repmat(1./dr.ys(k1),1,size(dr.ghx,2)).*dr.ghx.* ...
             repmat(dr.ys(k1(klag(:,1)))',size(dr.ghx,1),1);
    dr.ghu = repmat(1./dr.ys(k1),1,size(dr.ghu,2)).*dr.ghu;
end