File: AB01MD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (402 lines) | stat: -rw-r--r-- 14,142 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
      SUBROUTINE AB01MD( JOBZ, N, A, LDA, B, NCONT, Z, LDZ, TAU, TOL,
     $                   DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To find a controllable realization for the linear time-invariant
C     single-input system
C
C             dX/dt = A * X + B * U,
C
C     where A is an N-by-N matrix and B is an N element vector which
C     are reduced by this routine to orthogonal canonical form using
C     (and optionally accumulating) orthogonal similarity
C     transformations.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBZ    CHARACTER*1
C             Indicates whether the user wishes to accumulate in a
C             matrix Z the orthogonal similarity transformations for
C             reducing the system, as follows:
C             = 'N':  Do not form Z and do not store the orthogonal
C                     transformations;
C             = 'F':  Do not form Z, but store the orthogonal
C                     transformations in the factored form;
C             = 'I':  Z is initialized to the unit matrix and the
C                     orthogonal transformation matrix Z is returned.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the original state-space representation,
C             i.e. the order of the matrix A.  N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the original state dynamics matrix A.
C             On exit, the leading NCONT-by-NCONT upper Hessenberg
C             part of this array contains the canonical form of the
C             state dynamics matrix, given by Z' * A * Z, of a
C             controllable realization for the original system. The
C             elements below the first subdiagonal are set to zero.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (N)
C             On entry, the original input/state vector B.
C             On exit, the leading NCONT elements of this array contain
C             canonical form of the input/state vector, given by Z' * B,
C             with all elements but B(1) set to zero.
C
C     NCONT   (output) INTEGER
C             The order of the controllable state-space representation.
C
C     Z       (output) DOUBLE PRECISION array, dimension (LDZ,N)
C             If JOBZ = 'I', then the leading N-by-N part of this array
C             contains the matrix of accumulated orthogonal similarity
C             transformations which reduces the given system to
C             orthogonal canonical form.
C             If JOBZ = 'F', the elements below the diagonal, with the
C             array TAU, represent the orthogonal transformation matrix
C             as a product of elementary reflectors. The transformation
C             matrix can then be obtained by calling the LAPACK Library
C             routine DORGQR.
C             If JOBZ = 'N', the array Z is not referenced and can be
C             supplied as a dummy array (i.e. set parameter LDZ = 1 and
C             declare this array to be Z(1,1) in the calling program).
C
C     LDZ     INTEGER
C             The leading dimension of array Z. If JOBZ = 'I' or
C             JOBZ = 'F', LDZ >= MAX(1,N); if JOBZ = 'N', LDZ >= 1.
C
C     TAU     (output) DOUBLE PRECISION array, dimension (N)
C             The elements of TAU contain the scalar factors of the
C             elementary reflectors used in the reduction of B and A.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in determining the
C             controllability of (A,B). If the user sets TOL > 0, then
C             the given value of TOL is used as an absolute tolerance;
C             elements with absolute value less than TOL are considered
C             neglijible. If the user sets TOL <= 0, then an implicitly
C             computed, default tolerance, defined by
C             TOLDEF = N*EPS*MAX( NORM(A), NORM(B) ) is used instead,
C             where EPS is the machine precision (see LAPACK Library
C             routine DLAMCH).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK. LDWORK >= MAX(1,N).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The Householder matrix which reduces all but the first element
C     of vector B to zero is found and this orthogonal similarity
C     transformation is applied to the matrix A. The resulting A is then
C     reduced to upper Hessenberg form by a sequence of Householder
C     transformations. Finally, the order of the controllable state-
C     space representation (NCONT) is determined by finding the position
C     of the first sub-diagonal element of A which is below an
C     appropriate zero threshold, either TOL or TOLDEF (see parameter
C     TOL); if NORM(B) is smaller than this threshold, NCONT is set to
C     zero, and no computations for reducing the system to orthogonal
C     canonical form are performed.
C
C     REFERENCES
C
C     [1] Konstantinov, M.M., Petkov, P.Hr. and Christov, N.D.
C         Orthogonal Invariants and Canonical Forms for Linear
C         Controllable Systems.
C         Proc. 8th IFAC World Congress, Kyoto, 1, pp. 49-54, 1981.
C
C     [2] Hammarling, S.J.
C         Notes on the use of orthogonal similarity transformations in
C         control.
C         NPL Report DITC 8/82, August 1982.
C
C     [3] Paige, C.C
C         Properties of numerical algorithms related to computing
C         controllability.
C         IEEE Trans. Auto. Contr., AC-26, pp. 130-138, 1981.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations and is backward stable.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Oct. 1996.
C     Supersedes Release 2.0 routine AB01AD by T.W.C. Williams,
C     Kingston Polytechnic, United Kingdom, October 1982.
C
C     REVISIONS
C
C     V. Sima, February 16, 1998, October 19, 2001, February 2, 2005.
C
C     KEYWORDS
C
C     Controllability, minimal realization, orthogonal canonical form,
C     orthogonal transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOBZ
      INTEGER           INFO, LDA, LDZ, LDWORK, N, NCONT
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(*), DWORK(*), TAU(*), Z(LDZ,*)
C     .. Local Scalars ..
      LOGICAL           LJOBF, LJOBI, LJOBZ
      INTEGER           ITAU, J
      DOUBLE PRECISION  ANORM, B1, BNORM, FANORM, FBNORM, H, THRESH,
     $                  TOLDEF, WRKOPT
C     .. Local Arrays ..
      DOUBLE PRECISION  NBLK(1)
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLANGE
      EXTERNAL          DLAMCH, DLANGE, LSAME
C     .. External Subroutines ..
      EXTERNAL          DGEHRD, DLACPY, DLARF, DLARFG, DLASET, DORGQR,
     $                  MB01PD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, MAX
C     .. Executable Statements ..
C
      INFO = 0
      LJOBF = LSAME( JOBZ, 'F' )
      LJOBI = LSAME( JOBZ, 'I' )
      LJOBZ = LJOBF.OR.LJOBI
C
C     Test the input scalar arguments.
C
      IF( .NOT.LJOBZ .AND. .NOT.LSAME( JOBZ, 'N' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX(1,N) ) THEN
         INFO = -4
      ELSE IF( .NOT.LJOBZ .AND. LDZ.LT.1 .OR.
     $              LJOBZ .AND. LDZ.LT.MAX(1,N) ) THEN
         INFO = -8
      ELSE IF( LDWORK.LT.MAX( 1, N ) ) THEN
         INFO = -12
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB01MD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      NCONT = 0
      DWORK(1) = ONE
      IF ( N.EQ.0 )
     $   RETURN
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      WRKOPT = ONE
C
C     Calculate the absolute norms of A and B (used for scaling).
C
      ANORM = DLANGE( 'M', N, N, A, LDA, DWORK )
      BNORM = DLANGE( 'M', N, 1, B, N, DWORK )
C
C     Return if matrix B is zero.
C
      IF( BNORM.EQ.ZERO ) THEN
         IF( LJOBF ) THEN
            CALL DLASET( 'F', N, N, ZERO, ZERO, Z, LDZ )
            CALL DLASET( 'F', N, 1, ZERO, ZERO, TAU, N )
         ELSE IF( LJOBI ) THEN
            CALL DLASET( 'F', N, N, ZERO, ONE, Z, LDZ )
         END IF
         RETURN
      END IF
C
C     Scale (if needed) the matrices A and B.
C
      CALL MB01PD( 'S', 'G', N, N, 0, 0, ANORM, 0, NBLK, A, LDA, INFO )
      CALL MB01PD( 'S', 'G', N, 1, 0, 0, BNORM, 0, NBLK, B, N, INFO )
C
C     Calculate the Frobenius norm of A and the 1-norm of B (used for
C     controlability test).
C
      FANORM = DLANGE( 'F', N, N, A, LDA, DWORK )
      FBNORM = DLANGE( '1', N, 1, B, N, DWORK )
C
      TOLDEF = TOL
      IF ( TOLDEF.LE.ZERO ) THEN
C
C        Use the default tolerance in controllability determination.
C
         THRESH = DBLE(N)*DLAMCH( 'EPSILON' )
         TOLDEF = THRESH*MAX( FANORM, FBNORM )
      END IF
C
      ITAU = 1
      IF ( FBNORM.GT.TOLDEF ) THEN
C
C        B is not negligible compared with A.
C
         IF ( N.GT.1 ) THEN
C
C           Transform B by a Householder matrix Z1: store vector
C           describing this temporarily in B and in the local scalar H.
C
            CALL DLARFG( N, B(1), B(2), 1, H )
C
            B1 = B(1)
            B(1) = ONE
C
C           Form Z1 * A * Z1.
C
            CALL DLARF( 'R', N, N, B, 1, H, A, LDA, DWORK )
            CALL DLARF( 'L', N, N, B, 1, H, A, LDA, DWORK )
C
            B(1) = B1
            TAU(1) = H
            ITAU = ITAU + 1
         ELSE
            B1 = B(1)
         END IF
C
C        Reduce modified A to upper Hessenberg form by an orthogonal
C        similarity transformation with matrix Z2.
C        Workspace: need N;  prefer N*NB.
C
         CALL DGEHRD( N, 1, N, A, LDA, TAU(ITAU), DWORK, LDWORK, INFO )
         WRKOPT = DWORK(1)
C
         IF ( LJOBZ ) THEN
C
C           Save the orthogonal transformations used, so that they could
C           be accumulated by calling DORGQR routine.
C
            IF ( N.GT.1 )
     $         CALL DLACPY( 'F', N-1, 1, B(2), N-1, Z(2,1), LDZ )
            IF ( N.GT.2 )
     $         CALL DLACPY( 'L', N-2, N-2, A(3,1), LDA, Z(3,2), LDZ )
            IF ( LJOBI ) THEN
C
C              Form the orthogonal transformation matrix Z = Z1 * Z2.
C              Workspace: need N;  prefer N*NB.
C
               CALL DORGQR( N, N, N, Z, LDZ, TAU, DWORK, LDWORK, INFO )
               WRKOPT = MAX( WRKOPT, DWORK(1) )
            END IF
         END IF
C
C        Annihilate the lower part of A and B.
C
         IF ( N.GT.2 )
     $      CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, A(3,1), LDA )
         IF ( N.GT.1 )
     $      CALL DLASET( 'F', N-1, 1, ZERO, ZERO, B(2), N-1 )
C
C        Find NCONT by checking sizes of the sub-diagonal elements of
C        transformed A.
C
         IF ( TOL.LE.ZERO ) TOLDEF = THRESH*MAX( FANORM, ABS( B1 ) )
C
         J = 1
C
C        WHILE ( J < N and ABS( A(J+1,J) ) > TOLDEF ) DO
C
   10    CONTINUE
         IF ( J.LT.N ) THEN
            IF ( ABS( A(J+1,J) ).GT.TOLDEF ) THEN
               J = J + 1
               GO TO 10
            END IF
         END IF
C
C        END WHILE 10
C
C        First negligible sub-diagonal element found, if any: set NCONT.
C
         NCONT = J
         IF ( J.LT.N ) A(J+1,J) = ZERO
C
C        Undo scaling of A and B.
C
         CALL MB01PD( 'U', 'H', NCONT, NCONT, 0, 0, ANORM, 0, NBLK, A,
     $                LDA, INFO )
         CALL MB01PD( 'U', 'G', 1, 1, 0, 0, BNORM, 0, NBLK, B, N, INFO )
         IF ( NCONT.LT.N )
     $      CALL MB01PD( 'U', 'G', N, N-NCONT, 0, 0, ANORM, 0, NBLK,
     $                   A(1,NCONT+1), LDA, INFO )
      ELSE
C
C        B is negligible compared with A. No computations for reducing
C        the system to orthogonal canonical form have been performed,
C        except scaling (which is undoed).
C
         IF( LJOBF ) THEN
            CALL DLASET( 'F', N, N, ZERO, ZERO, Z, LDZ )
            CALL DLASET( 'F', N, 1, ZERO, ZERO, TAU, N )
         ELSE IF( LJOBI ) THEN
            CALL DLASET( 'F', N, N, ZERO, ONE, Z, LDZ )
         END IF
         CALL MB01PD( 'U', 'G', N, N, 0, 0, ANORM, 0, NBLK, A, LDA,
     $                INFO )
         CALL MB01PD( 'U', 'G', N, 1, 0, 0, BNORM, 0, NBLK, B, N, INFO )
      END IF
C
C     Set optimal workspace dimension.
C
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of AB01MD ***
      END