File: AB04MD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (345 lines) | stat: -rw-r--r-- 11,406 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
      SUBROUTINE AB04MD( TYPE, N, M, P, ALPHA, BETA, A, LDA, B, LDB, C,
     $                   LDC, D, LDD, IWORK, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To perform a transformation on the parameters (A,B,C,D) of a
C     system, which is equivalent to a bilinear transformation of the
C     corresponding transfer function matrix.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TYPE    CHARACTER*1
C             Indicates the type of the original system and the
C             transformation to be performed as follows:
C             = 'D':  discrete-time   -> continuous-time;
C             = 'C':  continuous-time -> discrete-time.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the state matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     ALPHA,  (input) DOUBLE PRECISION
C     BETA    Parameters specifying the bilinear transformation.
C             Recommended values for stable systems: ALPHA = 1,
C             BETA = 1.  ALPHA <> 0, BETA <> 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state matrix A of the original system.
C             On exit, the leading N-by-N part of this array contains
C                              _
C             the state matrix A of the transformed system.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input matrix B of the original system.
C             On exit, the leading N-by-M part of this array contains
C                              _
C             the input matrix B of the transformed system.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the output matrix C of the original system.
C             On exit, the leading P-by-N part of this array contains
C                               _
C             the output matrix C of the transformed system.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the input/output matrix D for the original system.
C             On exit, the leading P-by-M part of this array contains
C                                     _
C             the input/output matrix D of the transformed system.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= MAX(1,N).
C             For optimum performance LDWORK >= MAX(1,N*NB), where NB
C             is the optimal blocksize.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the matrix (ALPHA*I + A) is exactly singular;
C             = 2:  if the matrix  (BETA*I - A) is exactly singular.
C
C     METHOD
C
C     The parameters of the discrete-time system are transformed into
C     the parameters of the continuous-time system (TYPE = 'D'), or
C     vice-versa (TYPE = 'C') by the transformation:
C
C     1.  Discrete -> continuous
C         _                     -1
C         A = beta*(alpha*I + A)  * (A - alpha*I)
C         _                                     -1
C         B = sqrt(2*alpha*beta) * (alpha*I + A)  * B
C         _                                         -1
C         C = sqrt(2*alpha*beta) * C * (alpha*I + A)
C         _                        -1
C         D = D - C * (alpha*I + A)  * B
C
C     which is equivalent to the bilinear transformation
C
C                       z - alpha
C         z -> s = beta ---------  .
C                       z + alpha
C
C     of one transfer matrix onto the other.
C
C     2.  Continuous -> discrete
C         _                     -1
C         A = alpha*(beta*I - A)  * (beta*I + A)
C         _                                    -1
C         B = sqrt(2*alpha*beta) * (beta*I - A)  * B
C         _                                        -1
C         C = sqrt(2*alpha*beta) * C * (beta*I - A)
C         _                       -1
C         D = D + C * (beta*I - A)  * B
C
C     which is equivalent to the bilinear transformation
C
C                      beta + s
C       s -> z = alpha -------- .
C                      beta - s
C
C     of one transfer matrix onto the other.
C
C     REFERENCES
C
C     [1] Al-Saggaf, U.M. and Franklin, G.F.
C         Model reduction via balanced realizations: a extension and
C         frequency weighting techniques.
C         IEEE Trans. Autom. Contr., AC-33, pp. 687-692, 1988.
C
C     NUMERICAL ASPECTS
C                                                      3
C     The time taken is approximately proportional to N .
C     The accuracy depends mainly on the condition number of the matrix
C     to be inverted.
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, and
C                  A. Varga, German Aerospace Research Establishment,
C                  Oberpfaffenhofen, Germany, Nov. 1996.
C     Supersedes Release 2.0 routine AB04AD by W. van der Linden, and
C     A.J. Geurts, Technische Hogeschool Eindhoven, Holland.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Bilinear transformation, continuous-time system, discrete-time
C     system, state-space model.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO
      PARAMETER         ( ZERO=0.0D0, ONE=1.0D0, TWO=2.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         TYPE
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDWORK, M, N, P
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           LTYPE
      INTEGER           I, IP
      DOUBLE PRECISION  AB2, PALPHA, PBETA, SQRAB2
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DGEMM, DGETRF, DGETRS, DGETRI, DLASCL, DSCAL,
     $                  DSWAP, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, MAX, SIGN, SQRT
C     .. Executable Statements ..
C
      INFO = 0
      LTYPE = LSAME( TYPE, 'D' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LTYPE .AND. .NOT.LSAME( TYPE, 'C' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( ALPHA.EQ.ZERO ) THEN
         INFO = -5
      ELSE IF( BETA.EQ.ZERO ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -12
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -14
      ELSE IF( LDWORK.LT.MAX( 1, N ) ) THEN
         INFO = -17
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB04MD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MAX( N, M, P ).EQ.0 )
     $   RETURN
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      IF (LTYPE) THEN
C
C        Discrete-time to continuous-time with (ALPHA, BETA).
C
         PALPHA = ALPHA
         PBETA = BETA
      ELSE
C
C        Continuous-time to discrete-time with (ALPHA, BETA) is
C        equivalent with discrete-time to continuous-time with
C        (-BETA, -ALPHA), if B and C change the sign.
C
         PALPHA = -BETA
         PBETA = -ALPHA
      END IF
C
      AB2 = PALPHA*PBETA*TWO
      SQRAB2 = SIGN( SQRT( ABS( AB2 ) ), PALPHA )
C                          -1
C     Compute (alpha*I + A)  .
C
      DO 10 I = 1, N
         A(I,I)  =  A(I,I) + PALPHA
   10 CONTINUE
C
      CALL DGETRF( N, N, A, LDA, IWORK, INFO )
C
      IF (INFO.NE.0) THEN
C
C        Error return.
C
         IF (LTYPE) THEN
            INFO = 1
         ELSE
            INFO = 2
         END IF
         RETURN
      END IF
C                         -1
C     Compute  (alpha*I+A)  *B.
C
      CALL DGETRS( 'No transpose', N, M, A, LDA, IWORK, B, LDB, INFO )
C                               -1
C     Compute  D - C*(alpha*I+A)  *B.
C
      CALL DGEMM( 'No transpose', 'No transpose', P, M, N, -ONE, C,
     $            LDC, B, LDB, ONE, D, LDD )
C
C     Scale B by  sqrt(2*alpha*beta).
C
      CALL DLASCL( 'General', 0, 0, ONE, SQRAB2, N, M, B, LDB, INFO )
C                                                -1
C     Compute  sqrt(2*alpha*beta)*C*(alpha*I + A)  .
C
      CALL DTRSM( 'Right', 'Upper', 'No transpose', 'Non-unit', P, N,
     $            SQRAB2, A, LDA, C, LDC )
C
      CALL DTRSM( 'Right', 'Lower', 'No transpose', 'Unit', P, N, ONE,
     $            A, LDA, C, LDC )
C
C     Apply column interchanges to the solution matrix.
C
      DO 20 I = N-1, 1, -1
         IP = IWORK(I)
         IF ( IP.NE.I )
     $      CALL DSWAP( P, C(1,I), 1, C(1,IP), 1 )
  20  CONTINUE
C                               -1
C     Compute beta*(alpha*I + A)  *(A - alpha*I) as
C                                        -1
C     beta*I - 2*alpha*beta*(alpha*I + A)  .
C
C     Workspace: need N;  prefer N*NB.
C
      CALL DGETRI( N, A, LDA, IWORK, DWORK, LDWORK, INFO )
C
      DO 30 I = 1, N
         CALL DSCAL(N, -AB2, A(1,I), 1)
         A(I,I) = A(I,I) + PBETA
   30 CONTINUE
C
      RETURN
C *** Last line of AB04MD ***
      END