1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
SUBROUTINE AB04MD( TYPE, N, M, P, ALPHA, BETA, A, LDA, B, LDB, C,
$ LDC, D, LDD, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To perform a transformation on the parameters (A,B,C,D) of a
C system, which is equivalent to a bilinear transformation of the
C corresponding transfer function matrix.
C
C ARGUMENTS
C
C Mode Parameters
C
C TYPE CHARACTER*1
C Indicates the type of the original system and the
C transformation to be performed as follows:
C = 'D': discrete-time -> continuous-time;
C = 'C': continuous-time -> discrete-time.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the state matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C ALPHA, (input) DOUBLE PRECISION
C BETA Parameters specifying the bilinear transformation.
C Recommended values for stable systems: ALPHA = 1,
C BETA = 1. ALPHA <> 0, BETA <> 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state matrix A of the original system.
C On exit, the leading N-by-N part of this array contains
C _
C the state matrix A of the transformed system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input matrix B of the original system.
C On exit, the leading N-by-M part of this array contains
C _
C the input matrix B of the transformed system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the output matrix C of the original system.
C On exit, the leading P-by-N part of this array contains
C _
C the output matrix C of the transformed system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the input/output matrix D for the original system.
C On exit, the leading P-by-M part of this array contains
C _
C the input/output matrix D of the transformed system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C Workspace
C
C IWORK INTEGER array, dimension (N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= MAX(1,N).
C For optimum performance LDWORK >= MAX(1,N*NB), where NB
C is the optimal blocksize.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the matrix (ALPHA*I + A) is exactly singular;
C = 2: if the matrix (BETA*I - A) is exactly singular.
C
C METHOD
C
C The parameters of the discrete-time system are transformed into
C the parameters of the continuous-time system (TYPE = 'D'), or
C vice-versa (TYPE = 'C') by the transformation:
C
C 1. Discrete -> continuous
C _ -1
C A = beta*(alpha*I + A) * (A - alpha*I)
C _ -1
C B = sqrt(2*alpha*beta) * (alpha*I + A) * B
C _ -1
C C = sqrt(2*alpha*beta) * C * (alpha*I + A)
C _ -1
C D = D - C * (alpha*I + A) * B
C
C which is equivalent to the bilinear transformation
C
C z - alpha
C z -> s = beta --------- .
C z + alpha
C
C of one transfer matrix onto the other.
C
C 2. Continuous -> discrete
C _ -1
C A = alpha*(beta*I - A) * (beta*I + A)
C _ -1
C B = sqrt(2*alpha*beta) * (beta*I - A) * B
C _ -1
C C = sqrt(2*alpha*beta) * C * (beta*I - A)
C _ -1
C D = D + C * (beta*I - A) * B
C
C which is equivalent to the bilinear transformation
C
C beta + s
C s -> z = alpha -------- .
C beta - s
C
C of one transfer matrix onto the other.
C
C REFERENCES
C
C [1] Al-Saggaf, U.M. and Franklin, G.F.
C Model reduction via balanced realizations: a extension and
C frequency weighting techniques.
C IEEE Trans. Autom. Contr., AC-33, pp. 687-692, 1988.
C
C NUMERICAL ASPECTS
C 3
C The time taken is approximately proportional to N .
C The accuracy depends mainly on the condition number of the matrix
C to be inverted.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, and
C A. Varga, German Aerospace Research Establishment,
C Oberpfaffenhofen, Germany, Nov. 1996.
C Supersedes Release 2.0 routine AB04AD by W. van der Linden, and
C A.J. Geurts, Technische Hogeschool Eindhoven, Holland.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Bilinear transformation, continuous-time system, discrete-time
C system, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO=0.0D0, ONE=1.0D0, TWO=2.0D0 )
C .. Scalar Arguments ..
CHARACTER TYPE
INTEGER INFO, LDA, LDB, LDC, LDD, LDWORK, M, N, P
DOUBLE PRECISION ALPHA, BETA
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DWORK(*)
C .. Local Scalars ..
LOGICAL LTYPE
INTEGER I, IP
DOUBLE PRECISION AB2, PALPHA, PBETA, SQRAB2
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DGEMM, DGETRF, DGETRS, DGETRI, DLASCL, DSCAL,
$ DSWAP, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SIGN, SQRT
C .. Executable Statements ..
C
INFO = 0
LTYPE = LSAME( TYPE, 'D' )
C
C Test the input scalar arguments.
C
IF( .NOT.LTYPE .AND. .NOT.LSAME( TYPE, 'C' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( P.LT.0 ) THEN
INFO = -4
ELSE IF( ALPHA.EQ.ZERO ) THEN
INFO = -5
ELSE IF( BETA.EQ.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -12
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -14
ELSE IF( LDWORK.LT.MAX( 1, N ) ) THEN
INFO = -17
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB04MD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MAX( N, M, P ).EQ.0 )
$ RETURN
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
IF (LTYPE) THEN
C
C Discrete-time to continuous-time with (ALPHA, BETA).
C
PALPHA = ALPHA
PBETA = BETA
ELSE
C
C Continuous-time to discrete-time with (ALPHA, BETA) is
C equivalent with discrete-time to continuous-time with
C (-BETA, -ALPHA), if B and C change the sign.
C
PALPHA = -BETA
PBETA = -ALPHA
END IF
C
AB2 = PALPHA*PBETA*TWO
SQRAB2 = SIGN( SQRT( ABS( AB2 ) ), PALPHA )
C -1
C Compute (alpha*I + A) .
C
DO 10 I = 1, N
A(I,I) = A(I,I) + PALPHA
10 CONTINUE
C
CALL DGETRF( N, N, A, LDA, IWORK, INFO )
C
IF (INFO.NE.0) THEN
C
C Error return.
C
IF (LTYPE) THEN
INFO = 1
ELSE
INFO = 2
END IF
RETURN
END IF
C -1
C Compute (alpha*I+A) *B.
C
CALL DGETRS( 'No transpose', N, M, A, LDA, IWORK, B, LDB, INFO )
C -1
C Compute D - C*(alpha*I+A) *B.
C
CALL DGEMM( 'No transpose', 'No transpose', P, M, N, -ONE, C,
$ LDC, B, LDB, ONE, D, LDD )
C
C Scale B by sqrt(2*alpha*beta).
C
CALL DLASCL( 'General', 0, 0, ONE, SQRAB2, N, M, B, LDB, INFO )
C -1
C Compute sqrt(2*alpha*beta)*C*(alpha*I + A) .
C
CALL DTRSM( 'Right', 'Upper', 'No transpose', 'Non-unit', P, N,
$ SQRAB2, A, LDA, C, LDC )
C
CALL DTRSM( 'Right', 'Lower', 'No transpose', 'Unit', P, N, ONE,
$ A, LDA, C, LDC )
C
C Apply column interchanges to the solution matrix.
C
DO 20 I = N-1, 1, -1
IP = IWORK(I)
IF ( IP.NE.I )
$ CALL DSWAP( P, C(1,I), 1, C(1,IP), 1 )
20 CONTINUE
C -1
C Compute beta*(alpha*I + A) *(A - alpha*I) as
C -1
C beta*I - 2*alpha*beta*(alpha*I + A) .
C
C Workspace: need N; prefer N*NB.
C
CALL DGETRI( N, A, LDA, IWORK, DWORK, LDWORK, INFO )
C
DO 30 I = 1, N
CALL DSCAL(N, -AB2, A(1,I), 1)
A(I,I) = A(I,I) + PBETA
30 CONTINUE
C
RETURN
C *** Last line of AB04MD ***
END
|