File: AB05OD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (418 lines) | stat: -rw-r--r-- 13,724 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
      SUBROUTINE AB05OD( OVER, N1, M1, P1, N2, M2, ALPHA, A1, LDA1, B1,
     $                   LDB1, C1, LDC1, D1, LDD1, A2, LDA2, B2, LDB2,
     $                   C2, LDC2, D2, LDD2, N, M, A, LDA, B, LDB, C,
     $                   LDC, D, LDD, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To obtain the state-space model (A,B,C,D) for rowwise
C     concatenation (parallel inter-connection on outputs, with separate
C     inputs) of two systems, each given in state-space form.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     OVER    CHARACTER*1
C             Indicates whether the user wishes to overlap pairs of
C             arrays, as follows:
C             = 'N':  Do not overlap;
C             = 'O':  Overlap pairs of arrays: A1 and A, B1 and B,
C                     C1 and C, and D1 and D, i.e. the same name is
C                     effectively used for each pair (for all pairs)
C                     in the routine call.  In this case, setting
C                     LDA1 = LDA, LDB1 = LDB, LDC1 = LDC, and LDD1 = LDD
C                     will give maximum efficiency.
C
C     Input/Output Parameters
C
C     N1      (input) INTEGER
C             The number of state variables in the first system, i.e.
C             the order of the matrix A1.  N1 >= 0.
C
C     M1      (input) INTEGER
C             The number of input variables for the first system.
C             M1 >= 0.
C
C     P1      (input) INTEGER
C             The number of output variables from each system.  P1 >= 0.
C
C     N2      (input) INTEGER
C             The number of state variables in the second system, i.e.
C             the order of the matrix A2.  N2 >= 0.
C
C     M2      (input) INTEGER
C             The number of input variables for the second system.
C             M2 >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             A coefficient multiplying the transfer-function matrix
C             (or the output equation) of the second system.
C
C     A1      (input) DOUBLE PRECISION array, dimension (LDA1,N1)
C             The leading N1-by-N1 part of this array must contain the
C             state transition matrix A1 for the first system.
C
C     LDA1    INTEGER
C             The leading dimension of array A1.  LDA1 >= MAX(1,N1).
C
C     B1      (input) DOUBLE PRECISION array, dimension (LDB1,M1)
C             The leading N1-by-M1 part of this array must contain the
C             input/state matrix B1 for the first system.
C
C     LDB1    INTEGER
C             The leading dimension of array B1.  LDB1 >= MAX(1,N1).
C
C     C1      (input) DOUBLE PRECISION array, dimension (LDC1,N1)
C             The leading P1-by-N1 part of this array must contain the
C             state/output matrix C1 for the first system.
C
C     LDC1    INTEGER
C             The leading dimension of array C1.
C             LDC1 >= MAX(1,P1) if N1 > 0.
C             LDC1 >= 1 if N1 = 0.
C
C     D1      (input) DOUBLE PRECISION array, dimension (LDD1,M1)
C             The leading P1-by-M1 part of this array must contain the
C             input/output matrix D1 for the first system.
C
C     LDD1    INTEGER
C             The leading dimension of array D1.  LDD1 >= MAX(1,P1).
C
C     A2      (input) DOUBLE PRECISION array, dimension (LDA2,N2)
C             The leading N2-by-N2 part of this array must contain the
C             state transition matrix A2 for the second system.
C
C     LDA2    INTEGER
C             The leading dimension of array A2.  LDA2 >= MAX(1,N2).
C
C     B2      (input) DOUBLE PRECISION array, dimension (LDB2,M2)
C             The leading N2-by-M2 part of this array must contain the
C             input/state matrix B2 for the second system.
C
C     LDB2    INTEGER
C             The leading dimension of array B2.  LDB2 >= MAX(1,N2).
C
C     C2      (input) DOUBLE PRECISION array, dimension (LDC2,N2)
C             The leading P1-by-N2 part of this array must contain the
C             state/output matrix C2 for the second system.
C
C     LDC2    INTEGER
C             The leading dimension of array C2.
C             LDC2 >= MAX(1,P1) if N2 > 0.
C             LDC2 >= 1 if N2 = 0.
C
C     D2      (input) DOUBLE PRECISION array, dimension (LDD2,M2)
C             The leading P1-by-M2 part of this array must contain the
C             input/output matrix D2 for the second system.
C
C     LDD2    INTEGER
C             The leading dimension of array D2.  LDD2 >= MAX(1,P1).
C
C     N       (output) INTEGER
C             The number of state variables (N1 + N2) in the connected
C             system, i.e. the order of the matrix A, the number of rows
C             of B and the number of columns of C.
C
C     M       (output) INTEGER
C             The number of input variables (M1 + M2) for the connected
C             system, i.e. the number of columns of B and D.
C
C     A       (output) DOUBLE PRECISION array, dimension (LDA,N1+N2)
C             The leading N-by-N part of this array contains the state
C             transition matrix A for the connected system.
C             The array A can overlap A1 if OVER = 'O'.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N1+N2).
C
C     B       (output) DOUBLE PRECISION array, dimension (LDB,M1+M2)
C             The leading N-by-M part of this array contains the
C             input/state matrix B for the connected system.
C             The array B can overlap B1 if OVER = 'O'.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N1+N2).
C
C     C       (output) DOUBLE PRECISION array, dimension (LDC,N1+N2)
C             The leading P1-by-N part of this array contains the
C             state/output matrix C for the connected system.
C             The array C can overlap C1 if OVER = 'O'.
C
C     LDC     INTEGER
C             The leading dimension of array C.
C             LDC >= MAX(1,P1) if N1+N2 > 0.
C             LDC >= 1 if N1+N2 = 0.
C
C     D       (output) DOUBLE PRECISION array, dimension (LDD,M1+M2)
C             The leading P1-by-M part of this array contains the
C             input/output matrix D for the connected system.
C             The array D can overlap D1 if OVER = 'O'.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P1).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     After rowwise concatenation (parallel inter-connection with
C     separate inputs) of the two systems,
C
C     X1'     = A1*X1 + B1*U
C     Y1      = C1*X1 + D1*U
C
C     X2'     = A2*X2 + B2*V
C     Y2      = C2*X2 + D2*V
C
C     (where  '  denotes differentiation with respect to time),
C
C     with the output equation for the second system multiplied by a
C     scalar alpha, the following state-space model will be obtained:
C
C     X'      = A*X + B*(U)
C                       (V)
C
C     Y       = C*X + D*(U)
C                       (V)
C
C     where matrix  A  has the form    ( A1   0  ),
C                                      ( 0    A2 )
C
C           matrix  B  has the form    ( B1   0  ),
C                                      ( 0    B2 )
C
C           matrix  C  has the form    ( C1   alpha*C2 ) and
C
C           matrix  D  has the form    ( D1   alpha*D2 ).
C
C     REFERENCES
C
C     None
C
C     NUMERICAL ASPECTS
C
C     None
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Oct. 1996.
C     Supersedes Release 2.0 routine AB05CD by C.J.Benson, Kingston
C     Polytechnic, United Kingdom, January 1982.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, July 2003,
C     Feb. 2004.
C
C     KEYWORDS
C
C     Continuous-time system, multivariable system, state-space model,
C     state-space representation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         OVER
      INTEGER           INFO, LDA, LDA1, LDA2, LDB, LDB1, LDB2, LDC,
     $                  LDC1, LDC2, LDD, LDD1, LDD2, M, M1, M2, N, N1,
     $                  N2, P1
      DOUBLE PRECISION  ALPHA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), A1(LDA1,*), A2(LDA2,*), B(LDB,*),
     $                  B1(LDB1,*), B2(LDB2,*), C(LDC,*), C1(LDC1,*),
     $                  C2(LDC2,*), D(LDD,*), D1(LDD1,*), D2(LDD2,*)
C     .. Local Scalars ..
      LOGICAL           LOVER
      INTEGER           I, J
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DLACPY, DLASCL, DLASET, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C     .. Executable Statements ..
C
      LOVER = LSAME( OVER, 'O' )
      N = N1 + N2
      M = M1 + M2
      INFO = 0
C
C     Test the input scalar arguments.
C
      IF( .NOT.LOVER .AND. .NOT.LSAME( OVER, 'N' ) ) THEN
         INFO = -1
      ELSE IF( N1.LT.0 ) THEN
         INFO = -2
      ELSE IF( M1.LT.0 ) THEN
         INFO = -3
      ELSE IF( P1.LT.0 ) THEN
         INFO = -4
      ELSE IF( N2.LT.0 ) THEN
         INFO = -5
      ELSE IF( M2.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDA1.LT.MAX( 1, N1 ) ) THEN
         INFO = -9
      ELSE IF( LDB1.LT.MAX( 1, N1 ) ) THEN
         INFO = -11
      ELSE IF( ( N1.GT.0 .AND. LDC1.LT.MAX( 1, P1 ) ) .OR.
     $         ( N1.EQ.0 .AND. LDC1.LT.1 ) ) THEN
         INFO = -13
      ELSE IF( LDD1.LT.MAX( 1, P1 ) ) THEN
         INFO = -15
      ELSE IF( LDA2.LT.MAX( 1, N2 ) ) THEN
         INFO = -17
      ELSE IF( LDB2.LT.MAX( 1, N2 ) ) THEN
         INFO = -19
      ELSE IF( ( N2.GT.0 .AND. LDC2.LT.MAX( 1, P1 ) ) .OR.
     $         ( N2.EQ.0 .AND. LDC2.LT.1 ) ) THEN
         INFO = -21
      ELSE IF( LDD2.LT.MAX( 1, P1 ) ) THEN
         INFO = -23
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -27
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -29
      ELSE IF( ( N.GT.0 .AND. LDC.LT.MAX( 1, P1 ) ) .OR.
     $         ( N.EQ.0 .AND. LDC.LT.1 ) ) THEN
         INFO = -31
      ELSE IF( LDD.LT.MAX( 1, P1 ) ) THEN
         INFO = -33
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB05OD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MAX( N, MIN( M, P1 ) ).EQ.0 )
     $   RETURN
C
C     First form the matrix  A.
C
      IF ( LOVER .AND. LDA1.LE.LDA ) THEN
         IF ( LDA1.LT.LDA ) THEN
C
            DO 20 J = N1, 1, -1
               DO 10 I = N1, 1, -1
                  A(I,J) = A1(I,J)
   10          CONTINUE
   20       CONTINUE
C
         END IF
      ELSE
         CALL DLACPY( 'F', N1, N1, A1, LDA1, A, LDA )
      END IF
C
      IF ( N2.GT.0 ) THEN
         CALL DLACPY( 'F', N2, N2, A2, LDA2, A(N1+1,N1+1), LDA )
         CALL DLASET( 'F', N1, N2, ZERO, ZERO, A(1,N1+1), LDA )
         CALL DLASET( 'F', N2, N1, ZERO, ZERO, A(N1+1,1), LDA )
      END IF
C
C     Now form the matrix  B.
C
      IF ( LOVER .AND. LDB1.LE.LDB ) THEN
         IF ( LDB1.LT.LDB ) THEN
C
            DO 40 J = M1, 1, -1
               DO 30 I = N1, 1, -1
                  B(I,J) = B1(I,J)
   30          CONTINUE
   40       CONTINUE
C
         END IF
      ELSE
         CALL DLACPY( 'F', N1, M1, B1, LDB1, B, LDB )
      END IF
C
      IF ( M2.GT.0 ) THEN
         IF ( N2.GT.0 )
     $      CALL DLACPY( 'F', N2, M2, B2, LDB2, B(N1+1,M1+1), LDB )
         CALL DLASET( 'F', N1, M2, ZERO, ZERO, B(1,M1+1), LDB )
      END IF
      IF ( N2.GT.0 )
     $   CALL DLASET( 'F', N2, M1, ZERO, ZERO, B(N1+1,1), LDB )
C
C     Now form the matrix  C.
C
      IF ( LOVER .AND. LDC1.LE.LDC ) THEN
         IF ( LDC1.LT.LDC ) THEN
C
            DO 60 J = N1, 1, -1
               DO 50 I = P1, 1, -1
                  C(I,J) = C1(I,J)
   50          CONTINUE
   60       CONTINUE
C
         END IF
      ELSE
         CALL DLACPY( 'F', P1, N1, C1, LDC1, C, LDC )
      END IF
C
      IF ( N2.GT.0 ) THEN
         CALL DLACPY( 'F', P1, N2, C2, LDC2, C(1,N1+1), LDC )
         IF ( ALPHA.NE.ONE )
     $      CALL DLASCL( 'G', 0, 0, ONE, ALPHA, P1, N2, C(1,N1+1), LDC,
     $                   INFO )
      END IF
C
C     Now form the matrix  D.
C
      IF ( LOVER .AND. LDD1.LE.LDD ) THEN
         IF ( LDD1.LT.LDD ) THEN
C
            DO 80 J = M1, 1, -1
               DO 70 I = P1, 1, -1
                  D(I,J) = D1(I,J)
   70          CONTINUE
   80       CONTINUE
C
         END IF
      ELSE
         CALL DLACPY( 'F', P1, M1, D1, LDD1, D, LDD )
      END IF
C
      IF ( M2.GT.0 ) THEN
         CALL DLACPY( 'F', P1, M2, D2, LDD2, D(1,M1+1), LDD )
         IF ( ALPHA.NE.ONE )
     $      CALL DLASCL( 'G', 0, 0, ONE, ALPHA, P1, M2, D(1,M1+1), LDD,
     $                   INFO )
      END IF
C
      RETURN
C *** Last line of AB05OD ***
      END