1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
SUBROUTINE AB05OD( OVER, N1, M1, P1, N2, M2, ALPHA, A1, LDA1, B1,
$ LDB1, C1, LDC1, D1, LDD1, A2, LDA2, B2, LDB2,
$ C2, LDC2, D2, LDD2, N, M, A, LDA, B, LDB, C,
$ LDC, D, LDD, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To obtain the state-space model (A,B,C,D) for rowwise
C concatenation (parallel inter-connection on outputs, with separate
C inputs) of two systems, each given in state-space form.
C
C ARGUMENTS
C
C Mode Parameters
C
C OVER CHARACTER*1
C Indicates whether the user wishes to overlap pairs of
C arrays, as follows:
C = 'N': Do not overlap;
C = 'O': Overlap pairs of arrays: A1 and A, B1 and B,
C C1 and C, and D1 and D, i.e. the same name is
C effectively used for each pair (for all pairs)
C in the routine call. In this case, setting
C LDA1 = LDA, LDB1 = LDB, LDC1 = LDC, and LDD1 = LDD
C will give maximum efficiency.
C
C Input/Output Parameters
C
C N1 (input) INTEGER
C The number of state variables in the first system, i.e.
C the order of the matrix A1. N1 >= 0.
C
C M1 (input) INTEGER
C The number of input variables for the first system.
C M1 >= 0.
C
C P1 (input) INTEGER
C The number of output variables from each system. P1 >= 0.
C
C N2 (input) INTEGER
C The number of state variables in the second system, i.e.
C the order of the matrix A2. N2 >= 0.
C
C M2 (input) INTEGER
C The number of input variables for the second system.
C M2 >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C A coefficient multiplying the transfer-function matrix
C (or the output equation) of the second system.
C
C A1 (input) DOUBLE PRECISION array, dimension (LDA1,N1)
C The leading N1-by-N1 part of this array must contain the
C state transition matrix A1 for the first system.
C
C LDA1 INTEGER
C The leading dimension of array A1. LDA1 >= MAX(1,N1).
C
C B1 (input) DOUBLE PRECISION array, dimension (LDB1,M1)
C The leading N1-by-M1 part of this array must contain the
C input/state matrix B1 for the first system.
C
C LDB1 INTEGER
C The leading dimension of array B1. LDB1 >= MAX(1,N1).
C
C C1 (input) DOUBLE PRECISION array, dimension (LDC1,N1)
C The leading P1-by-N1 part of this array must contain the
C state/output matrix C1 for the first system.
C
C LDC1 INTEGER
C The leading dimension of array C1.
C LDC1 >= MAX(1,P1) if N1 > 0.
C LDC1 >= 1 if N1 = 0.
C
C D1 (input) DOUBLE PRECISION array, dimension (LDD1,M1)
C The leading P1-by-M1 part of this array must contain the
C input/output matrix D1 for the first system.
C
C LDD1 INTEGER
C The leading dimension of array D1. LDD1 >= MAX(1,P1).
C
C A2 (input) DOUBLE PRECISION array, dimension (LDA2,N2)
C The leading N2-by-N2 part of this array must contain the
C state transition matrix A2 for the second system.
C
C LDA2 INTEGER
C The leading dimension of array A2. LDA2 >= MAX(1,N2).
C
C B2 (input) DOUBLE PRECISION array, dimension (LDB2,M2)
C The leading N2-by-M2 part of this array must contain the
C input/state matrix B2 for the second system.
C
C LDB2 INTEGER
C The leading dimension of array B2. LDB2 >= MAX(1,N2).
C
C C2 (input) DOUBLE PRECISION array, dimension (LDC2,N2)
C The leading P1-by-N2 part of this array must contain the
C state/output matrix C2 for the second system.
C
C LDC2 INTEGER
C The leading dimension of array C2.
C LDC2 >= MAX(1,P1) if N2 > 0.
C LDC2 >= 1 if N2 = 0.
C
C D2 (input) DOUBLE PRECISION array, dimension (LDD2,M2)
C The leading P1-by-M2 part of this array must contain the
C input/output matrix D2 for the second system.
C
C LDD2 INTEGER
C The leading dimension of array D2. LDD2 >= MAX(1,P1).
C
C N (output) INTEGER
C The number of state variables (N1 + N2) in the connected
C system, i.e. the order of the matrix A, the number of rows
C of B and the number of columns of C.
C
C M (output) INTEGER
C The number of input variables (M1 + M2) for the connected
C system, i.e. the number of columns of B and D.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N1+N2)
C The leading N-by-N part of this array contains the state
C transition matrix A for the connected system.
C The array A can overlap A1 if OVER = 'O'.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N1+N2).
C
C B (output) DOUBLE PRECISION array, dimension (LDB,M1+M2)
C The leading N-by-M part of this array contains the
C input/state matrix B for the connected system.
C The array B can overlap B1 if OVER = 'O'.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N1+N2).
C
C C (output) DOUBLE PRECISION array, dimension (LDC,N1+N2)
C The leading P1-by-N part of this array contains the
C state/output matrix C for the connected system.
C The array C can overlap C1 if OVER = 'O'.
C
C LDC INTEGER
C The leading dimension of array C.
C LDC >= MAX(1,P1) if N1+N2 > 0.
C LDC >= 1 if N1+N2 = 0.
C
C D (output) DOUBLE PRECISION array, dimension (LDD,M1+M2)
C The leading P1-by-M part of this array contains the
C input/output matrix D for the connected system.
C The array D can overlap D1 if OVER = 'O'.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P1).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C After rowwise concatenation (parallel inter-connection with
C separate inputs) of the two systems,
C
C X1' = A1*X1 + B1*U
C Y1 = C1*X1 + D1*U
C
C X2' = A2*X2 + B2*V
C Y2 = C2*X2 + D2*V
C
C (where ' denotes differentiation with respect to time),
C
C with the output equation for the second system multiplied by a
C scalar alpha, the following state-space model will be obtained:
C
C X' = A*X + B*(U)
C (V)
C
C Y = C*X + D*(U)
C (V)
C
C where matrix A has the form ( A1 0 ),
C ( 0 A2 )
C
C matrix B has the form ( B1 0 ),
C ( 0 B2 )
C
C matrix C has the form ( C1 alpha*C2 ) and
C
C matrix D has the form ( D1 alpha*D2 ).
C
C REFERENCES
C
C None
C
C NUMERICAL ASPECTS
C
C None
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Oct. 1996.
C Supersedes Release 2.0 routine AB05CD by C.J.Benson, Kingston
C Polytechnic, United Kingdom, January 1982.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, July 2003,
C Feb. 2004.
C
C KEYWORDS
C
C Continuous-time system, multivariable system, state-space model,
C state-space representation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER OVER
INTEGER INFO, LDA, LDA1, LDA2, LDB, LDB1, LDB2, LDC,
$ LDC1, LDC2, LDD, LDD1, LDD2, M, M1, M2, N, N1,
$ N2, P1
DOUBLE PRECISION ALPHA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), A1(LDA1,*), A2(LDA2,*), B(LDB,*),
$ B1(LDB1,*), B2(LDB2,*), C(LDC,*), C1(LDC1,*),
$ C2(LDC2,*), D(LDD,*), D1(LDD1,*), D2(LDD2,*)
C .. Local Scalars ..
LOGICAL LOVER
INTEGER I, J
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DLACPY, DLASCL, DLASET, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C .. Executable Statements ..
C
LOVER = LSAME( OVER, 'O' )
N = N1 + N2
M = M1 + M2
INFO = 0
C
C Test the input scalar arguments.
C
IF( .NOT.LOVER .AND. .NOT.LSAME( OVER, 'N' ) ) THEN
INFO = -1
ELSE IF( N1.LT.0 ) THEN
INFO = -2
ELSE IF( M1.LT.0 ) THEN
INFO = -3
ELSE IF( P1.LT.0 ) THEN
INFO = -4
ELSE IF( N2.LT.0 ) THEN
INFO = -5
ELSE IF( M2.LT.0 ) THEN
INFO = -6
ELSE IF( LDA1.LT.MAX( 1, N1 ) ) THEN
INFO = -9
ELSE IF( LDB1.LT.MAX( 1, N1 ) ) THEN
INFO = -11
ELSE IF( ( N1.GT.0 .AND. LDC1.LT.MAX( 1, P1 ) ) .OR.
$ ( N1.EQ.0 .AND. LDC1.LT.1 ) ) THEN
INFO = -13
ELSE IF( LDD1.LT.MAX( 1, P1 ) ) THEN
INFO = -15
ELSE IF( LDA2.LT.MAX( 1, N2 ) ) THEN
INFO = -17
ELSE IF( LDB2.LT.MAX( 1, N2 ) ) THEN
INFO = -19
ELSE IF( ( N2.GT.0 .AND. LDC2.LT.MAX( 1, P1 ) ) .OR.
$ ( N2.EQ.0 .AND. LDC2.LT.1 ) ) THEN
INFO = -21
ELSE IF( LDD2.LT.MAX( 1, P1 ) ) THEN
INFO = -23
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -27
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -29
ELSE IF( ( N.GT.0 .AND. LDC.LT.MAX( 1, P1 ) ) .OR.
$ ( N.EQ.0 .AND. LDC.LT.1 ) ) THEN
INFO = -31
ELSE IF( LDD.LT.MAX( 1, P1 ) ) THEN
INFO = -33
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB05OD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MAX( N, MIN( M, P1 ) ).EQ.0 )
$ RETURN
C
C First form the matrix A.
C
IF ( LOVER .AND. LDA1.LE.LDA ) THEN
IF ( LDA1.LT.LDA ) THEN
C
DO 20 J = N1, 1, -1
DO 10 I = N1, 1, -1
A(I,J) = A1(I,J)
10 CONTINUE
20 CONTINUE
C
END IF
ELSE
CALL DLACPY( 'F', N1, N1, A1, LDA1, A, LDA )
END IF
C
IF ( N2.GT.0 ) THEN
CALL DLACPY( 'F', N2, N2, A2, LDA2, A(N1+1,N1+1), LDA )
CALL DLASET( 'F', N1, N2, ZERO, ZERO, A(1,N1+1), LDA )
CALL DLASET( 'F', N2, N1, ZERO, ZERO, A(N1+1,1), LDA )
END IF
C
C Now form the matrix B.
C
IF ( LOVER .AND. LDB1.LE.LDB ) THEN
IF ( LDB1.LT.LDB ) THEN
C
DO 40 J = M1, 1, -1
DO 30 I = N1, 1, -1
B(I,J) = B1(I,J)
30 CONTINUE
40 CONTINUE
C
END IF
ELSE
CALL DLACPY( 'F', N1, M1, B1, LDB1, B, LDB )
END IF
C
IF ( M2.GT.0 ) THEN
IF ( N2.GT.0 )
$ CALL DLACPY( 'F', N2, M2, B2, LDB2, B(N1+1,M1+1), LDB )
CALL DLASET( 'F', N1, M2, ZERO, ZERO, B(1,M1+1), LDB )
END IF
IF ( N2.GT.0 )
$ CALL DLASET( 'F', N2, M1, ZERO, ZERO, B(N1+1,1), LDB )
C
C Now form the matrix C.
C
IF ( LOVER .AND. LDC1.LE.LDC ) THEN
IF ( LDC1.LT.LDC ) THEN
C
DO 60 J = N1, 1, -1
DO 50 I = P1, 1, -1
C(I,J) = C1(I,J)
50 CONTINUE
60 CONTINUE
C
END IF
ELSE
CALL DLACPY( 'F', P1, N1, C1, LDC1, C, LDC )
END IF
C
IF ( N2.GT.0 ) THEN
CALL DLACPY( 'F', P1, N2, C2, LDC2, C(1,N1+1), LDC )
IF ( ALPHA.NE.ONE )
$ CALL DLASCL( 'G', 0, 0, ONE, ALPHA, P1, N2, C(1,N1+1), LDC,
$ INFO )
END IF
C
C Now form the matrix D.
C
IF ( LOVER .AND. LDD1.LE.LDD ) THEN
IF ( LDD1.LT.LDD ) THEN
C
DO 80 J = M1, 1, -1
DO 70 I = P1, 1, -1
D(I,J) = D1(I,J)
70 CONTINUE
80 CONTINUE
C
END IF
ELSE
CALL DLACPY( 'F', P1, M1, D1, LDD1, D, LDD )
END IF
C
IF ( M2.GT.0 ) THEN
CALL DLACPY( 'F', P1, M2, D2, LDD2, D(1,M1+1), LDD )
IF ( ALPHA.NE.ONE )
$ CALL DLASCL( 'G', 0, 0, ONE, ALPHA, P1, M2, D(1,M1+1), LDD,
$ INFO )
END IF
C
RETURN
C *** Last line of AB05OD ***
END
|