File: AB08MZ.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (303 lines) | stat: -rw-r--r-- 10,356 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
      SUBROUTINE AB08MZ( EQUIL, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   RANK, TOL, IWORK, DWORK, ZWORK, LZWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the normal rank of the transfer-function matrix of a
C     state-space model (A,B,C,D).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     EQUIL   CHARACTER*1
C             Specifies whether the user wishes to balance the compound
C             matrix (see METHOD) as follows:
C             = 'S':  Perform balancing (scaling);
C             = 'N':  Do not perform balancing.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of state variables, i.e., the order of the
C             matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     A       (input) COMPLEX*16 array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             state dynamics matrix A of the system.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input) COMPLEX*16 array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             input/state matrix B of the system.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input) COMPLEX*16 array, dimension (LDC,N)
C             The leading P-by-N part of this array must contain the
C             state/output matrix C of the system.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input) COMPLEX*16 array, dimension (LDD,M)
C             The leading P-by-M part of this array must contain the
C             direct transmission matrix D of the system.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     RANK    (output) INTEGER
C             The normal rank of the transfer-function matrix.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR (or RQ) factorization with column (or row) pivoting
C             whose estimated condition number is less than 1/TOL.
C             If the user sets TOL to be less than SQRT((N+P)*(N+M))*EPS
C             then the tolerance is taken as SQRT((N+P)*(N+M))*EPS,
C             where EPS is the machine precision (see LAPACK Library
C             Routine DLAMCH).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (2*N+MAX(M,P)+1)
C
C     DWORK   DOUBLE PRECISION array, dimension (2*MAX(M,P))
C
C     ZWORK   COMPLEX*16 array, dimension (LZWORK)
C             On exit, if INFO = 0, ZWORK(1) returns the optimal value
C             of LZWORK.
C
C     LZWORK  INTEGER
C             The length of the array ZWORK.
C             LZWORK >= (N+P)*(N+M) + MAX(MIN(P,M) + MAX(3*M-1,N), 1,
C                                         MIN(P,N) + MAX(3*P-1,N+P,N+M))
C             For optimum performance LZWORK should be larger.
C
C             If LZWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             ZWORK array, returns this value as the first entry of
C             the ZWORK array, and no error message related to LZWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The routine reduces the (N+P)-by-(M+N) compound matrix (B  A)
C                                                            (D  C)
C
C     to one with the same invariant zeros and with D of full row rank.
C     The normal rank of the transfer-function matrix is the rank of D.
C
C     REFERENCES
C
C     [1] Svaricek, F.
C         Computation of the Structural Invariants of Linear
C         Multivariable Systems with an Extended Version of
C         the Program ZEROS.
C         System & Control Letters, 6, pp. 261-266, 1985.
C
C     [2] Emami-Naeini, A. and Van Dooren, P.
C         Computation of Zeros of Linear Multivariable Systems.
C         Automatica, 18, pp. 415-430, 1982.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable (see [2] and [1]).
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, Oberpfaffenhofen, May 2001.
C     Complex version: V. Sima, Research Institute for Informatics,
C     Bucharest, Dec. 2008.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2009,
C     Apr. 2009.
C
C     KEYWORDS
C
C     Multivariable system, unitary transformation,
C     structural invariant.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         EQUIL
      INTEGER           INFO, LDA, LDB, LDC, LDD, LZWORK, M, N, P, RANK
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      COMPLEX*16        A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), ZWORK(*)
      DOUBLE PRECISION  DWORK(*)
C     .. Local Scalars ..
      LOGICAL           LEQUIL, LQUERY
      INTEGER           I, KW, MU, NB, NINFZ, NKROL, NM, NP, NU, RO,
     $                  SIGMA, WRKOPT
      DOUBLE PRECISION  MAXRED, SVLMAX, THRESH, TOLER
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, ZLANGE
      EXTERNAL          DLAMCH, LSAME, ZLANGE
C     .. External Subroutines ..
      EXTERNAL          AB8NXZ, TB01IZ, XERBLA, ZLACPY
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN, SQRT
C     .. Executable Statements ..
C
      NP = N + P
      NM = N + M
      INFO = 0
      LEQUIL = LSAME( EQUIL, 'S' )
      LQUERY = ( LZWORK.EQ.-1 )
      WRKOPT = NP*NM
C
C     Test the input scalar arguments.
C
      IF( .NOT.LEQUIL .AND. .NOT.LSAME( EQUIL, 'N' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -10
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -12
      ELSE
         KW = WRKOPT + MAX( MIN( P, M ) + MAX( 3*M-1, N ), 1,
     $                      MIN( P, N ) + MAX( 3*P-1, NP, NM ) )
         IF( LQUERY ) THEN
            SVLMAX = ZERO
            NINFZ  = 0
            CALL AB8NXZ( N, M, P, P, 0, SVLMAX, ZWORK, MAX( 1, NP ),
     $                   NINFZ, IWORK, IWORK, MU, NU, NKROL, TOL, IWORK,
     $                   DWORK, ZWORK, -1, INFO )
            WRKOPT = MAX( KW, WRKOPT + INT( ZWORK(1) ) )
         ELSE IF( LZWORK.LT.KW ) THEN
            INFO = -17
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB08MZ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         ZWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( M, P ).EQ.0 ) THEN
         RANK = 0
         ZWORK(1) = ONE
         RETURN
      END IF
C
      DO 10 I = 1, 2*N+1
         IWORK(I) = 0
   10 CONTINUE
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of workspace needed at that point in the code,
C     as well as the preferred amount for good performance.)
C
C     Construct the compound matrix  ( B  A ), dimension (N+P)-by-(M+N).
C                                    ( D  C )
C     Complex workspace: need   (N+P)*(N+M).
C
      CALL ZLACPY( 'Full', N, M, B, LDB, ZWORK, NP )
      CALL ZLACPY( 'Full', P, M, D, LDD, ZWORK(N+1), NP )
      CALL ZLACPY( 'Full', N, N, A, LDA, ZWORK(NP*M+1), NP )
      CALL ZLACPY( 'Full', P, N, C, LDC, ZWORK(NP*M+N+1), NP )
C
C     If required, balance the compound matrix (default MAXRED).
C     Real Workspace: need   N.
C
      KW = WRKOPT + 1
      IF ( LEQUIL ) THEN
         MAXRED = ZERO
         CALL TB01IZ( 'A', N, M, P, MAXRED, ZWORK(NP*M+1), NP, ZWORK,
     $                NP, ZWORK(NP*M+N+1), NP, DWORK, INFO )
      END IF
C
C     If required, set tolerance.
C
      THRESH = SQRT( DBLE( NP*NM ) )*DLAMCH( 'Precision' )
      TOLER = TOL
      IF ( TOLER.LT.THRESH ) TOLER = THRESH
      SVLMAX = ZLANGE( 'Frobenius', NP, NM, ZWORK, NP, DWORK )
C
C     Reduce this system to one with the same invariant zeros and with
C     D full row rank MU (the normal rank of the original system).
C     Real workspace:    need   2*MAX(M,P);
C     Complex workspace: need   (N+P)*(N+M) +
C                               MAX( 1, MIN(P,M) + MAX(3*M-1,N),
C                                       MIN(P,N) + MAX(3*P-1,N+P,N+M) );
C                        prefer larger.
C     Integer workspace: 2*N+MAX(M,P)+1.
C
      RO = P
      SIGMA = 0
      NINFZ = 0
      CALL AB8NXZ( N, M, P, RO, SIGMA, SVLMAX, ZWORK, NP, NINFZ, IWORK,
     $             IWORK(N+1), MU, NU, NKROL, TOLER, IWORK(2*N+2),
     $             DWORK, ZWORK(KW), LZWORK-KW+1, INFO )
      RANK = MU
C
      ZWORK(1) = MAX( WRKOPT, INT( ZWORK(KW) ) + KW - 1 )
      RETURN
C *** Last line of AB08MZ ***
      END