File: AB08NX.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (446 lines) | stat: -rw-r--r-- 15,877 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
      SUBROUTINE AB08NX( N, M, P, RO, SIGMA, SVLMAX, ABCD, LDABCD,
     $                   NINFZ, INFZ, KRONL, MU, NU, NKROL, TOL, IWORK,
     $                   DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To extract from the (N+P)-by-(M+N) system
C                  ( B  A )
C                  ( D  C )
C     an (NU+MU)-by-(M+NU) "reduced" system
C                  ( B' A')
C                  ( D' C')
C     having the same transmission zeros but with D' of full row rank.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of state variables.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     RO      (input/output) INTEGER
C             On entry,
C             = P     for the original system;
C             = MAX(P-M, 0) for the pertransposed system.
C             On exit, RO contains the last computed rank.
C
C     SIGMA   (input/output) INTEGER
C             On entry,
C             = 0  for the original system;
C             = M  for the pertransposed system.
C             On exit, SIGMA contains the last computed value sigma in
C             the algorithm.
C
C     SVLMAX  (input) DOUBLE PRECISION
C             During each reduction step, the rank-revealing QR
C             factorization of a matrix stops when the estimated minimum
C             singular value is smaller than TOL * MAX(SVLMAX,EMSV),
C             where EMSV is the estimated maximum singular value.
C             SVLMAX >= 0.
C
C     ABCD    (input/output) DOUBLE PRECISION array, dimension
C             (LDABCD,M+N)
C             On entry, the leading (N+P)-by-(M+N) part of this array
C             must contain the compound input matrix of the system.
C             On exit, the leading (NU+MU)-by-(M+NU) part of this array
C             contains the reduced compound input matrix of the system.
C
C     LDABCD  INTEGER
C             The leading dimension of array ABCD.
C             LDABCD >= MAX(1,N+P).
C
C     NINFZ   (input/output) INTEGER
C             On entry, the currently computed number of infinite zeros.
C             It should be initialized to zero on the first call.
C             NINFZ >= 0.
C             On exit, the number of infinite zeros.
C
C     INFZ    (input/output) INTEGER array, dimension (N)
C             On entry, INFZ(i) must contain the current number of
C             infinite zeros of degree i, where i = 1,2,...,N, found in
C             the previous call(s) of the routine. It should be
C             initialized to zero on the first call.
C             On exit, INFZ(i) contains the number of infinite zeros of
C             degree i, where i = 1,2,...,N.
C
C     KRONL   (input/output) INTEGER array, dimension (N+1)
C             On entry, this array must contain the currently computed
C             left Kronecker (row) indices found in the previous call(s)
C             of the routine. It should be initialized to zero on the
C             first call.
C             On exit, the leading NKROL elements of this array contain
C             the left Kronecker (row) indices.
C
C     MU      (output) INTEGER
C             The normal rank of the transfer function matrix of the
C             original system.
C
C     NU      (output) INTEGER
C             The dimension of the reduced system matrix and the number
C             of (finite) invariant zeros if D' is invertible.
C
C     NKROL   (output) INTEGER
C             The number of left Kronecker indices.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR (or RQ) factorization with column (or row) pivoting
C             whose estimated condition number is less than 1/TOL.
C             NOTE that when SVLMAX > 0, the estimated ranks could be
C             less than those defined above (see SVLMAX).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (MAX(M,P))
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX( 1, MIN(P,M) + MAX(3*M-1,N),
C                               MIN(P,N) + MAX(3*P-1,N+P,N+M) ).
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     REFERENCES
C
C     [1] Svaricek, F.
C         Computation of the Structural Invariants of Linear
C         Multivariable Systems with an Extended Version of
C         the Program ZEROS.
C         System & Control Letters, 6, pp. 261-266, 1985.
C
C     [2] Emami-Naeini, A. and Van Dooren, P.
C         Computation of Zeros of Linear Multivariable Systems.
C         Automatica, 18, pp. 415-430, 1982.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Nov. 1996.
C     Supersedes Release 2.0 routine AB08BZ by F. Svaricek.
C
C     REVISIONS
C
C     V. Sima, Oct. 1997; Feb. 1998, Jan. 2009, Apr. 2009.
C     A. Varga, May 1999; May 2001.
C
C     KEYWORDS
C
C     Generalized eigenvalue problem, Kronecker indices, multivariable
C     system, orthogonal transformation, structural invariant.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO
      PARAMETER         ( ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDABCD, LDWORK, M, MU, N, NINFZ, NKROL,
     $                  NU, P, RO, SIGMA
      DOUBLE PRECISION  SVLMAX, TOL
C     .. Array Arguments ..
      INTEGER           INFZ(*), IWORK(*), KRONL(*)
      DOUBLE PRECISION  ABCD(LDABCD,*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           LQUERY
      INTEGER           I1, IK, IROW, ITAU, IZ, JWORK, MM1, MNTAU, MNU,
     $                  MPM, NB, NP, RANK, RO1, TAU, WRKOPT
      DOUBLE PRECISION  T
C     .. Local Arrays ..
      DOUBLE PRECISION  SVAL(3)
C     .. External Functions ..
      INTEGER           ILAENV
      EXTERNAL          ILAENV
C     .. External Subroutines ..
      EXTERNAL          DLAPMT, DLARFG, DLASET, DLATZM, DORMQR, DORMRQ,
     $                  MB03OY, MB03PY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C     .. Executable Statements ..
C
      NP   = N + P
      MPM  = MIN( P, M )
      INFO = 0
      LQUERY = ( LDWORK.EQ.-1 )
C
C     Test the input scalar arguments.
C
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( RO.NE.P .AND. RO.NE.MAX( P-M, 0 ) ) THEN
         INFO = -4
      ELSE IF( SIGMA.NE.0 .AND. SIGMA.NE.M ) THEN
         INFO = -5
      ELSE IF( SVLMAX.LT.ZERO ) THEN
         INFO = -6
      ELSE IF( LDABCD.LT.MAX( 1, NP ) ) THEN
         INFO = -8
      ELSE IF( NINFZ.LT.0 ) THEN
         INFO = -9
      ELSE
         JWORK = MAX( 1,      MPM + MAX( 3*M - 1, N ),
     $                MIN( P, N ) + MAX( 3*P - 1, NP, N+M ) )
         IF( LQUERY ) THEN
            IF( M.GT.0 ) THEN
               NB = MIN( 64, ILAENV( 1, 'DORMQR', 'LT', P, N, MPM,
     $                               -1 ) )
               WRKOPT = MAX( JWORK, MPM + MAX( 1, N )*NB )
            ELSE
               WRKOPT = JWORK
            END IF
            NB = MIN( 64, ILAENV( 1, 'DORMRQ', 'RT', NP, N, MIN( P, N ),
     $                            -1 ) )
            WRKOPT = MAX( WRKOPT, MIN( P, N ) + MAX( 1, NP )*NB )
            NB = MIN( 64, ILAENV( 1, 'DORMRQ', 'LN', N, M+N,
     $                            MIN( P, N ), -1 ) )
            WRKOPT = MAX( WRKOPT, MIN( P, N ) + MAX( 1, M+N )*NB )
         ELSE IF( LDWORK.LT.JWORK ) THEN
            INFO = -18
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB08NX', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
      MU = P
      NU = N
C
      IZ = 0
      IK = 1
      MM1 = M + 1
      ITAU = 1
      NKROL = 0
      WRKOPT = 1
C
C     Main reduction loop:
C
C            M   NU                  M     NU
C      NU  [ B   A ]           NU  [ B     A ]
C      MU  [ D   C ]  -->    SIGMA [ RD   C1 ]   (SIGMA = rank(D) =
C                             TAU  [ 0    C2 ]    row size of RD)
C
C                                    M   NU-RO  RO
C                            NU-RO [ B1   A11  A12 ]
C                     -->      RO  [ B2   A21  A22 ]  (RO = rank(C2) =
C                            SIGMA [ RD   C11  C12 ]   col size of LC)
C                             TAU  [ 0     0   LC  ]
C
C                                      M   NU-RO
C                            NU-RO [ B1   A11 ]     NU := NU - RO
C                                  [----------]     MU := RO + SIGMA
C                     -->      RO  [ B2   A21 ]      D := [B2;RD]
C                            SIGMA [ RD   C11 ]      C := [A21;C11]
C
   20 IF ( MU.EQ.0 )
     $   GO TO 80
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.)
C
      RO1 = RO
      MNU = M + NU
      IF ( M.GT.0 ) THEN
         IF ( SIGMA.NE.0 ) THEN
            IROW = NU + 1
C
C           Compress rows of D.  First exploit triangular shape.
C           Workspace: need   M+N-1.
C
            DO 40 I1 = 1, SIGMA
               CALL DLARFG( RO+1, ABCD(IROW,I1), ABCD(IROW+1,I1), 1, T )
               CALL DLATZM( 'L', RO+1, MNU-I1, ABCD(IROW+1,I1), 1, T,
     $                      ABCD(IROW,I1+1), ABCD(IROW+1,I1+1), LDABCD,
     $                      DWORK )
               IROW = IROW + 1
   40       CONTINUE
            CALL DLASET( 'Lower', RO+SIGMA-1, SIGMA, ZERO, ZERO,
     $                   ABCD(NU+2,1), LDABCD )
         END IF
C
C        Continue with Householder with column pivoting.
C
C        The rank of D is the number of (estimated) singular values
C        that are greater than TOL * MAX(SVLMAX,EMSV). This number
C        includes the singular values of the first SIGMA columns.
C        Integer workspace: need   M;
C        Workspace: need   min(RO1,M) + 3*M - 1.  RO1 <= P.
C
         IF ( SIGMA.LT.M ) THEN
            JWORK = ITAU + MIN( RO1, M )
            I1    = SIGMA + 1
            IROW  = NU + I1
            CALL MB03OY( RO1, M-SIGMA, ABCD(IROW,I1), LDABCD, TOL,
     $                   SVLMAX, RANK, SVAL, IWORK, DWORK(ITAU),
     $                   DWORK(JWORK), INFO )
            WRKOPT = MAX( WRKOPT, JWORK + 3*M - 2 )
C
C           Apply the column permutations to matrices B and part of D.
C
            CALL DLAPMT( .TRUE., NU+SIGMA, M-SIGMA, ABCD(1,I1), LDABCD,
     $                   IWORK )
C
            IF ( RANK.GT.0 ) THEN
C
C              Apply the Householder transformations to the submatrix C.
C              Workspace: need   min(RO1,M) + NU;
C                         prefer min(RO1,M) + NU*NB.
C
               CALL DORMQR( 'Left', 'Transpose', RO1, NU, RANK,
     $                      ABCD(IROW,I1), LDABCD, DWORK(ITAU),
     $                      ABCD(IROW,MM1), LDABCD, DWORK(JWORK),
     $                      LDWORK-JWORK+1, INFO )
               WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
               IF ( RO1.GT.1 )
     $            CALL DLASET( 'Lower', RO1-1, MIN( RO1-1, RANK ), ZERO,
     $                         ZERO, ABCD(IROW+1,I1), LDABCD )
               RO1 = RO1 - RANK
            END IF
         END IF
      END IF
C
      TAU = RO1
      SIGMA = MU - TAU
C
C     Determination of the orders of the infinite zeros.
C
      IF ( IZ.GT.0 ) THEN
         INFZ(IZ) = INFZ(IZ) + RO - TAU
         NINFZ = NINFZ + IZ*( RO - TAU )
      END IF
      IF ( RO1.EQ.0 )
     $   GO TO 80
      IZ = IZ + 1
C
      IF ( NU.LE.0 ) THEN
         MU = SIGMA
         NU = 0
         RO = 0
      ELSE
C
C        Compress the columns of C2 using RQ factorization with row
C        pivoting, P * C2 = R * Q.
C
         I1 = NU + SIGMA + 1
         MNTAU = MIN( TAU, NU )
         JWORK = ITAU + MNTAU
C
C        The rank of C2 is the number of (estimated) singular values
C        greater than TOL * MAX(SVLMAX,EMSV).
C        Integer Workspace: need TAU;
C        Workspace: need min(TAU,NU) + 3*TAU - 1.
C
         CALL MB03PY( TAU, NU, ABCD(I1,MM1), LDABCD, TOL, SVLMAX, RANK,
     $                SVAL, IWORK, DWORK(ITAU), DWORK(JWORK), INFO )
         WRKOPT = MAX( WRKOPT, JWORK + 3*TAU - 1 )
         IF ( RANK.GT.0 ) THEN
            IROW = I1 + TAU - RANK
C
C           Apply Q' to the first NU columns of [A; C1] from the right.
C           Workspace: need   min(TAU,NU) + NU + SIGMA; SIGMA <= P;
C                      prefer min(TAU,NU) + (NU  + SIGMA)*NB.
C
            CALL DORMRQ( 'Right', 'Transpose', I1-1, NU, RANK,
     $                   ABCD(IROW,MM1), LDABCD, DWORK(MNTAU-RANK+1),
     $                   ABCD(1,MM1), LDABCD, DWORK(JWORK),
     $                   LDWORK-JWORK+1, INFO )
            WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C           Apply Q to the first NU rows and M + NU columns of [ B  A ]
C           from the left.
C           Workspace: need   min(TAU,NU) + M + NU;
C                      prefer min(TAU,NU) + (M + NU)*NB.
C
            CALL DORMRQ( 'Left', 'NoTranspose', NU, MNU, RANK,
     $                   ABCD(IROW,MM1), LDABCD, DWORK(MNTAU-RANK+1),
     $                   ABCD, LDABCD, DWORK(JWORK), LDWORK-JWORK+1,
     $                   INFO )
            WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
            CALL DLASET( 'Full', RANK, NU-RANK, ZERO, ZERO,
     $                   ABCD(IROW,MM1), LDABCD )
            IF ( RANK.GT.1 )
     $         CALL DLASET( 'Lower', RANK-1, RANK-1, ZERO, ZERO,
     $                      ABCD(IROW+1,MM1+NU-RANK), LDABCD )
         END IF
C
         RO = RANK
      END IF
C
C     Determine the left Kronecker indices (row indices).
C
      KRONL(IK) = KRONL(IK) + TAU - RO
      NKROL = NKROL + KRONL(IK)
      IK = IK + 1
C
C     C and D are updated to [A21 ; C11] and [B2 ; RD].
C
      NU = NU - RO
      MU = SIGMA + RO
      IF ( RO.NE.0 )
     $   GO TO 20
C
   80 CONTINUE
      DWORK(1) = WRKOPT
      RETURN
C *** Last line of AB08NX ***
      END