1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
SUBROUTINE AB08NZ( EQUIL, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
$ NU, RANK, DINFZ, NKROR, NKROL, INFZ, KRONR,
$ KRONL, AF, LDAF, BF, LDBF, TOL, IWORK, DWORK,
$ ZWORK, LZWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To construct for a linear multivariable system described by a
C state-space model (A,B,C,D) a regular pencil (A - lambda*B ) which
C f f
C has the invariant zeros of the system as generalized eigenvalues.
C The routine also computes the orders of the infinite zeros and the
C right and left Kronecker indices of the system (A,B,C,D).
C
C ARGUMENTS
C
C Mode Parameters
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to balance the compound
C matrix (see METHOD) as follows:
C = 'S': Perform balancing (scaling);
C = 'N': Do not perform balancing.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of state variables, i.e., the order of the
C matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C A (input) COMPLEX*16 array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C state dynamics matrix A of the system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) COMPLEX*16 array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C input/state matrix B of the system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input) COMPLEX*16 array, dimension (LDC,N)
C The leading P-by-N part of this array must contain the
C state/output matrix C of the system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input) COMPLEX*16 array, dimension (LDD,M)
C The leading P-by-M part of this array must contain the
C direct transmission matrix D of the system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C NU (output) INTEGER
C The number of (finite) invariant zeros.
C
C RANK (output) INTEGER
C The normal rank of the transfer function matrix.
C
C DINFZ (output) INTEGER
C The maximum degree of infinite elementary divisors.
C
C NKROR (output) INTEGER
C The number of right Kronecker indices.
C
C NKROL (output) INTEGER
C The number of left Kronecker indices.
C
C INFZ (output) INTEGER array, dimension (N)
C The leading DINFZ elements of INFZ contain information
C on the infinite elementary divisors as follows:
C the system has INFZ(i) infinite elementary divisors
C of degree i, where i = 1,2,...,DINFZ.
C
C KRONR (output) INTEGER array, dimension (MAX(N,M)+1)
C The leading NKROR elements of this array contain the
C right Kronecker (column) indices.
C
C KRONL (output) INTEGER array, dimension (MAX(N,P)+1)
C The leading NKROL elements of this array contain the
C left Kronecker (row) indices.
C
C AF (output) COMPLEX*16 array, dimension (LDAF,N+MIN(P,M))
C The leading NU-by-NU part of this array contains the
C coefficient matrix A of the reduced pencil. The remainder
C f
C of the leading (N+M)-by-(N+MIN(P,M)) part is used as
C internal workspace.
C
C LDAF INTEGER
C The leading dimension of array AF. LDAF >= MAX(1,N+M).
C
C BF (output) COMPLEX*16 array, dimension (LDBF,N+M)
C The leading NU-by-NU part of this array contains the
C coefficient matrix B of the reduced pencil. The
C f
C remainder of the leading (N+P)-by-(N+M) part is used as
C internal workspace.
C
C LDBF INTEGER
C The leading dimension of array BF. LDBF >= MAX(1,N+P).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C A tolerance used in rank decisions to determine the
C effective rank, which is defined as the order of the
C largest leading (or trailing) triangular submatrix in the
C QR (or RQ) factorization with column (or row) pivoting
C whose estimated condition number is less than 1/TOL.
C If the user sets TOL to be less than SQRT((N+P)*(N+M))*EPS
C then the tolerance is taken as SQRT((N+P)*(N+M))*EPS,
C where EPS is the machine precision (see LAPACK Library
C Routine DLAMCH).
C
C Workspace
C
C IWORK INTEGER array, dimension (MAX(M,P))
C
C DWORK DOUBLE PRECISION array, dimension (MAX(N,2*MAX(P,M)))
C
C ZWORK DOUBLE PRECISION array, dimension (LZWORK)
C On exit, if INFO = 0, ZWORK(1) returns the optimal value
C of LZWORK.
C
C LZWORK INTEGER
C The length of the array ZWORK.
C LZWORK >= MAX( 1, MIN(P,M) + MAX(3*M-1,N),
C MIN(P,N) + MAX(3*P-1,N+P,N+M),
C MIN(M,N) + MAX(3*M-1,N+M) ).
C An upper bound is MAX(s,N) + MAX(3*s-1,N+s), with
C s = MAX(M,P).
C For optimum performance LZWORK should be larger.
C
C If LZWORK = -1, then a workspace query is assumed;
C the routine only calculates the optimal size of the
C ZWORK array, returns this value as the first entry of
C the ZWORK array, and no error message related to LZWORK
C is issued by XERBLA.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine extracts from the system matrix of a state-space
C system (A,B,C,D) a regular pencil A - lambda*B which has the
C f f
C invariant zeros of the system as generalized eigenvalues as
C follows:
C
C (a) construct the (N+P)-by-(N+M) compound matrix (B A);
C (D C)
C
C (b) reduce the above system to one with the same invariant
C zeros and with D of full row rank;
C
C (c) pertranspose the system;
C
C (d) reduce the system to one with the same invariant zeros and
C with D square invertible;
C
C (e) perform a unitary transformation on the columns of
C (A - lambda*I B) in order to reduce it to
C ( C D)
C
C (A - lambda*B X)
C ( f f ), with Y and B square invertible;
C ( 0 Y) f
C
C (f) compute the right and left Kronecker indices of the system
C (A,B,C,D), which together with the orders of the infinite
C zeros (determined by steps (a) - (e)) constitute the
C complete set of structural invariants under strict
C equivalence transformations of a linear system.
C
C REFERENCES
C
C [1] Svaricek, F.
C Computation of the Structural Invariants of Linear
C Multivariable Systems with an Extended Version of
C the Program ZEROS.
C System & Control Letters, 6, pp. 261-266, 1985.
C
C [2] Emami-Naeini, A. and Van Dooren, P.
C Computation of Zeros of Linear Multivariable Systems.
C Automatica, 18, pp. 415-430, 1982.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable (see [2] and [1]).
C
C FURTHER COMMENTS
C
C In order to compute the invariant zeros of the system explicitly,
C a call to this routine may be followed by a call to the LAPACK
C Library routine ZGGEV with A = A , B = B and N = NU.
C f f
C If RANK = 0, the routine ZGEEV can be used (since B = I).
C f
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Nov. 1996.
C Complex version: V. Sima, Research Institute for Informatics,
C Bucharest, Nov. 2008.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2009,
C Apr. 2009.
C
C KEYWORDS
C
C Generalized eigenvalue problem, Kronecker indices, multivariable
C system, unitary transformation, structural invariant.
C
C ******************************************************************
C
C .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ) )
DOUBLE PRECISION DZERO
PARAMETER ( DZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER EQUIL
INTEGER DINFZ, INFO, LDA, LDAF, LDB, LDBF, LDC, LDD,
$ LZWORK, M, N, NKROL, NKROR, NU, P, RANK
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER INFZ(*), IWORK(*), KRONL(*), KRONR(*)
COMPLEX*16 A(LDA,*), AF(LDAF,*), B(LDB,*), BF(LDBF,*),
$ C(LDC,*), D(LDD,*), ZWORK(*)
DOUBLE PRECISION DWORK(*)
C .. Local Scalars ..
LOGICAL LEQUIL, LQUERY
INTEGER I, I1, II, J, MM, MNU, MU, NB, NINFZ, NN, NU1,
$ NUMU, NUMU1, PP, RO, SIGMA, WRKOPT
DOUBLE PRECISION MAXRED, SVLMAX, THRESH, TOLER
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL DLAMCH, ILAENV, LSAME, ZLANGE
C .. External Subroutines ..
EXTERNAL AB8NXZ, TB01IZ, XERBLA, ZCOPY, ZLACPY, ZLASET,
$ ZTZRZF, ZUNMRZ
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
LEQUIL = LSAME( EQUIL, 'S' )
LQUERY = ( LZWORK.EQ.-1 )
C
C Test the input scalar arguments.
C
IF( .NOT.LEQUIL .AND. .NOT.LSAME( EQUIL, 'N' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( P.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -10
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -12
ELSE IF( LDAF.LT.MAX( 1, N + M ) ) THEN
INFO = -22
ELSE IF( LDBF.LT.MAX( 1, N + P ) ) THEN
INFO = -24
ELSE
II = MIN( P, M )
I = MAX( II + MAX( 3*M - 1, N ),
$ MIN( P, N ) + MAX( 3*P - 1, N+P, N+M ),
$ MIN( M, N ) + MAX( 3*M - 1, N+M ), 1 )
IF( LQUERY ) THEN
SVLMAX = DZERO
NINFZ = 0
CALL AB8NXZ( N, M, P, P, 0, SVLMAX, BF, LDBF, NINFZ, INFZ,
$ KRONL, MU, NU, NKROL, TOL, IWORK, DWORK,
$ ZWORK, -1, INFO )
WRKOPT = MAX( I, INT( ZWORK(1) ) )
CALL AB8NXZ( N, II, M, M-II, II, SVLMAX, AF, LDAF, NINFZ,
$ INFZ, KRONL, MU, NU, NKROL, TOL, IWORK, DWORK,
$ ZWORK, -1, INFO )
WRKOPT = MAX( WRKOPT, INT( ZWORK(1) ) )
NB = ILAENV( 1, 'ZGERQF', ' ', II, N+II, -1, -1 )
WRKOPT = MAX( WRKOPT, II + II*NB )
NB = MIN( 64, ILAENV( 1, 'ZUNMRQ', 'RC', N, N+II, II, -1 ) )
WRKOPT = MAX( WRKOPT, II + N*NB )
ELSE IF( LZWORK.LT.I ) THEN
INFO = -29
END IF
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB08NZ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
ZWORK(1) = WRKOPT
RETURN
END IF
C
DINFZ = 0
NKROL = 0
NKROR = 0
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
IF ( MIN( M, P ).EQ.0 ) THEN
NU = 0
RANK = 0
ZWORK(1) = ONE
RETURN
END IF
END IF
C
MM = M
NN = N
PP = P
C
DO 20 I = 1, N
INFZ(I) = 0
20 CONTINUE
C
IF ( M.GT.0 ) THEN
DO 40 I = 1, N + 1
KRONR(I) = 0
40 CONTINUE
END IF
C
IF ( P.GT.0 ) THEN
DO 60 I = 1, N + 1
KRONL(I) = 0
60 CONTINUE
END IF
C
C (Note: Comments in the code beginning "CWorkspace:" and
C "RWorkspace:" describe the minimal amount of complex and real
C workspace, respectively, needed at that point in the code, as
C well as the preferred amount for good performance.)
C
WRKOPT = 1
C
C Construct the compound matrix ( B A ), dimension (N+P)-by-(M+N).
C ( D C )
C
CALL ZLACPY( 'Full', NN, MM, B, LDB, BF, LDBF )
IF ( PP.GT.0 )
$ CALL ZLACPY( 'Full', PP, MM, D, LDD, BF(1+NN,1), LDBF )
IF ( NN.GT.0 ) THEN
CALL ZLACPY( 'Full', NN, NN, A, LDA, BF(1,1+MM), LDBF )
IF ( PP.GT.0 )
$ CALL ZLACPY( 'Full', PP, NN, C, LDC, BF(1+NN,1+MM), LDBF )
END IF
C
C If required, balance the compound matrix (default MAXRED).
C RWorkspace: need N.
C
IF ( LEQUIL .AND. NN.GT.0 .AND. PP.GT.0 ) THEN
MAXRED = DZERO
CALL TB01IZ( 'A', NN, MM, PP, MAXRED, BF(1,1+MM), LDBF, BF,
$ LDBF, BF(1+NN,1+MM), LDBF, DWORK, INFO )
END IF
C
C If required, set tolerance.
C
THRESH = SQRT( DBLE( (N + P)*(N + M) ) )*DLAMCH( 'Precision' )
TOLER = TOL
IF ( TOLER.LT.THRESH ) TOLER = THRESH
SVLMAX = ZLANGE( 'Frobenius', NN+PP, NN+MM, BF, LDBF, DWORK )
C
C Reduce this system to one with the same invariant zeros and with
C D upper triangular of full row rank MU (the normal rank of the
C original system).
C RWorkspace: need 2*MAX(M,P);
C CWorkspace: need MAX( 1, MIN(P,M) + MAX(3*M-1,N),
C MIN(P,N) + MAX(3*P-1,N+P,N+M) );
C prefer larger.
C
RO = PP
SIGMA = 0
NINFZ = 0
CALL AB8NXZ( NN, MM, PP, RO, SIGMA, SVLMAX, BF, LDBF, NINFZ, INFZ,
$ KRONL, MU, NU, NKROL, TOLER, IWORK, DWORK, ZWORK,
$ LZWORK, INFO )
WRKOPT = MAX( WRKOPT, INT( ZWORK(1) ) )
RANK = MU
C
C Pertranspose the system.
C
NUMU = NU + MU
IF ( NUMU.NE.0 ) THEN
MNU = MM + NU
NUMU1 = NUMU + 1
C
DO 80 I = 1, NUMU
CALL ZCOPY( MNU, BF(I,1), LDBF, AF(1,NUMU1-I), -1 )
80 CONTINUE
C
IF ( MU.NE.MM ) THEN
C
C Here MU < MM and MM > 0 (since MM = 0 implies MU = 0 = MM).
C
PP = MM
NN = NU
MM = MU
C
C Reduce the system to one with the same invariant zeros and
C with D square invertible.
C RWorkspace: need 2*M.
C CWorkspace: need MAX( 1, MU + MAX(3*MU-1,N),
C MIN(M,N) + MAX(3*M-1,N+M) );
C prefer larger. Note that MU <= MIN(M,P).
C
RO = PP - MM
SIGMA = MM
CALL AB8NXZ( NN, MM, PP, RO, SIGMA, SVLMAX, AF, LDAF, NINFZ,
$ INFZ, KRONR, MU, NU, NKROR, TOLER, IWORK,
$ DWORK, ZWORK, LZWORK, INFO )
WRKOPT = MAX( WRKOPT, INT( ZWORK(1) ) )
END IF
C
IF ( NU.NE.0 ) THEN
C
C Perform a unitary transformation on the columns of
C ( B A-lambda*I )
C ( D C )
C in order to reduce it to
C ( X AF-lambda*BF )
C ( Y 0 )
C with Y and BF square invertible.
C
CALL ZLASET( 'Full', NU, MU, ZERO, ZERO, BF, LDBF )
CALL ZLASET( 'Full', NU, NU, ZERO, ONE, BF(1,MU+1), LDBF )
C
IF ( RANK.NE.0 ) THEN
NU1 = NU + 1
I1 = NU + MU
C
C CWorkspace: need 2*MIN(M,P);
C prefer MIN(M,P) + MIN(M,P)*NB.
C
CALL ZTZRZF( MU, I1, AF(NU1,1), LDAF, ZWORK, ZWORK(MU+1),
$ LZWORK-MU, INFO )
WRKOPT = MAX( WRKOPT, INT( ZWORK(MU+1) ) + MU )
C
C CWorkspace: need MIN(M,P) + N;
C prefer MIN(M,P) + N*NB.
C
CALL ZUNMRZ( 'Right', 'Conjugate transpose', NU, I1, MU,
$ NU, AF(NU1,1), LDAF, ZWORK, AF, LDAF,
$ ZWORK(MU+1), LZWORK-MU, INFO )
WRKOPT = MAX( WRKOPT, INT( ZWORK(MU+1) ) + MU )
C
CALL ZUNMRZ( 'Right', 'Conjugate transpose', NU, I1, MU,
$ NU, AF(NU1,1), LDAF, ZWORK, BF, LDBF,
$ ZWORK(MU+1), LZWORK-MU, INFO )
C
END IF
C
C Move AF and BF in the first columns. This assumes that
C ZLACPY moves column by column.
C
CALL ZLACPY( 'Full', NU, NU, AF(1,MU+1), LDAF, AF, LDAF )
IF ( RANK.NE.0 )
$ CALL ZLACPY( 'Full', NU, NU, BF(1,MU+1), LDBF, BF, LDBF )
C
END IF
END IF
C
C Set right Kronecker indices (column indices).
C
IF ( NKROR.GT.0 ) THEN
J = 1
C
DO 120 I = 1, N + 1
C
DO 100 II = J, J + KRONR(I) - 1
IWORK(II) = I - 1
100 CONTINUE
C
J = J + KRONR(I)
KRONR(I) = 0
120 CONTINUE
C
NKROR = J - 1
C
DO 140 I = 1, NKROR
KRONR(I) = IWORK(I)
140 CONTINUE
C
END IF
C
C Set left Kronecker indices (row indices).
C
IF ( NKROL.GT.0 ) THEN
J = 1
C
DO 180 I = 1, N + 1
C
DO 160 II = J, J + KRONL(I) - 1
IWORK(II) = I - 1
160 CONTINUE
C
J = J + KRONL(I)
KRONL(I) = 0
180 CONTINUE
C
NKROL = J - 1
C
DO 200 I = 1, NKROL
KRONL(I) = IWORK(I)
200 CONTINUE
C
END IF
C
IF ( N.GT.0 ) THEN
DINFZ = N
C
220 CONTINUE
IF ( INFZ(DINFZ).EQ.0 ) THEN
DINFZ = DINFZ - 1
IF ( DINFZ.GT.0 )
$ GO TO 220
END IF
END IF
C
ZWORK(1) = WRKOPT
RETURN
C *** Last line of AB08NZ ***
END
|