1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
SUBROUTINE AB09AD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR, A, LDA,
$ B, LDB, C, LDC, HSV, TOL, IWORK, DWORK, LDWORK,
$ IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr) for a stable original
C state-space representation (A,B,C) by using either the square-root
C or the balancing-free square-root Balance & Truncate (B & T)
C model reduction method.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOB CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root Balance & Truncate method;
C = 'N': use the balancing-free square-root
C Balance & Truncate method.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to preliminarily
C equilibrate the triplet (A,B,C) as follows:
C = 'S': perform equilibration (scaling);
C = 'N': do not perform equilibration.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation, i.e.
C the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of the
C resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. NR is set as follows:
C if ORDSEL = 'F', NR is equal to MIN(NR,NMIN), where NR
C is the desired order on entry and NMIN is the order of a
C minimal realization of the given system; NMIN is
C determined as the number of Hankel singular values greater
C than N*EPS*HNORM(A,B,C), where EPS is the machine
C precision (see LAPACK Library Routine DLAMCH) and
C HNORM(A,B,C) is the Hankel norm of the system (computed
C in HSV(1));
C if ORDSEL = 'A', NR is equal to the number of Hankel
C singular values greater than MAX(TOL,N*EPS*HNORM(A,B,C)).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the reduced
C order system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, it contains the Hankel singular values of
C the original system ordered decreasingly. HSV(1) is the
C Hankel norm of the system.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If ORDSEL = 'A', TOL contains the tolerance for
C determining the order of reduced system.
C For model reduction, the recommended value is
C TOL = c*HNORM(A,B,C), where c is a constant in the
C interval [0.00001,0.001], and HNORM(A,B,C) is the
C Hankel-norm of the given system (computed in HSV(1)).
C For computing a minimal realization, the recommended
C value is TOL = N*EPS*HNORM(A,B,C), where EPS is the
C machine precision (see LAPACK Library Routine DLAMCH).
C This value is used by default if TOL <= 0 on entry.
C If ORDSEL = 'F', the value of TOL is ignored.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK = 0, if JOB = 'B';
C LIWORK = N, if JOB = 'N'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,N*(2*N+MAX(N,M,P)+5)+N*(N+1)/2).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than the order of a minimal realization of the
C given system. In this case, the resulting NR is
C set automatically to a value corresponding to the
C order of a minimal realization of the system.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction of A to the real Schur form failed;
C = 2: the state matrix A is not stable (if DICO = 'C')
C or not convergent (if DICO = 'D');
C = 3: the computation of Hankel singular values failed.
C
C METHOD
C
C Let be the stable linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09AD determines for
C the given system (1), the matrices of a reduced order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) (2)
C
C such that
C
C HSV(NR) <= INFNORM(G-Gr) <= 2*[HSV(NR+1) + ... + HSV(N)],
C
C where G and Gr are transfer-function matrices of the systems
C (A,B,C) and (Ar,Br,Cr), respectively, and INFNORM(G) is the
C infinity-norm of G.
C
C If JOB = 'B', the square-root Balance & Truncate method of [1]
C is used and, for DICO = 'C', the resulting model is balanced.
C By setting TOL <= 0, the routine can be used to compute balanced
C minimal state-space realizations of stable systems.
C
C If JOB = 'N', the balancing-free square-root version of the
C Balance & Truncate method [2] is used.
C By setting TOL <= 0, the routine can be used to compute minimal
C state-space realizations of stable systems.
C
C REFERENCES
C
C [1] Tombs M.S. and Postlethwaite I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C [2] Varga A.
C Efficient minimal realization procedure based on balancing.
C Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
C A. El Moudui, P. Borne, S. G. Tzafestas (Eds.),
C Vol. 2, pp. 42-46.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root or
C balancing-free square-root techniques.
C 3
C The algorithms require less than 30N floating point operations.
C
C CONTRIBUTOR
C
C C. Oara and A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, March 1998.
C Based on the RASP routines SRBT and SRBFT.
C
C REVISIONS
C
C May 2, 1998.
C November 11, 1998, V. Sima, Research Institute for Informatics,
C Bucharest.
C
C KEYWORDS
C
C Balancing, minimal state-space representation, model reduction,
C multivariable system, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, C100
PARAMETER ( ONE = 1.0D0, C100 = 100.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDWORK, M, N, NR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*)
C .. Local Scalars ..
LOGICAL FIXORD
INTEGER IERR, KI, KR, KT, KTI, KW, NN
DOUBLE PRECISION MAXRED, WRKOPT
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL AB09AX, TB01ID, TB01WD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
FIXORD = LSAME( ORDSEL, 'F' )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. LSAME( DICO, 'D' ) ) ) THEN
INFO = -1
ELSE IF( .NOT. ( LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT. ( LSAME( EQUIL, 'S' ) .OR.
$ LSAME( EQUIL, 'N' ) ) ) THEN
INFO = -3
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( M.LT.0 ) THEN
INFO = -6
ELSE IF( P.LT.0 ) THEN
INFO = -7
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -8
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -14
ELSE IF( LDWORK.LT.MAX( 1, N*( 2*N + MAX( N, M, P ) + 5 ) +
$ ( N*( N + 1 ) )/2 ) ) THEN
INFO = -19
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 .OR. ( FIXORD .AND. NR.EQ.0 ) ) THEN
NR = 0
DWORK(1) = ONE
RETURN
END IF
C
C Allocate working storage.
C
NN = N*N
KT = 1
KR = KT + NN
KI = KR + N
KW = KI + N
C
IF( LSAME( EQUIL, 'S' ) ) THEN
C
C Scale simultaneously the matrices A, B and C:
C A <- inv(D)*A*D, B <- inv(D)*B and C <- C*D, where D is a
C diagonal matrix.
C
MAXRED = C100
CALL TB01ID( 'A', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
$ DWORK, INFO )
END IF
C
C Reduce A to the real Schur form using an orthogonal similarity
C transformation A <- T'*A*T and apply the transformation to
C B and C: B <- T'*B and C <- C*T.
C
CALL TB01WD( N, M, P, A, LDA, B, LDB, C, LDC, DWORK(KT), N,
$ DWORK(KR), DWORK(KI), DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 1
RETURN
END IF
C
WRKOPT = DWORK(KW) + DBLE( KW-1 )
KTI = KT + NN
KW = KTI + NN
C
CALL AB09AX( DICO, JOB, ORDSEL, N, M, P, NR, A, LDA, B, LDB, C,
$ LDC, HSV, DWORK(KT), N, DWORK(KTI), N, TOL, IWORK,
$ DWORK(KW), LDWORK-KW+1, IWARN, IERR )
C
IF( IERR.NE.0 ) THEN
INFO = IERR + 1
RETURN
END IF
C
DWORK(1) = MAX( WRKOPT, DWORK(KW) + DBLE( KW-1 ) )
C
RETURN
C *** Last line of AB09AD ***
END
|