1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
SUBROUTINE AB09AX( DICO, JOB, ORDSEL, N, M, P, NR, A, LDA, B, LDB,
$ C, LDC, HSV, T, LDT, TI, LDTI, TOL, IWORK,
$ DWORK, LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr) for a stable original
C state-space representation (A,B,C) by using either the square-root
C or the balancing-free square-root Balance & Truncate model
C reduction method. The state dynamics matrix A of the original
C system is an upper quasi-triangular matrix in real Schur canonical
C form. The matrices of the reduced order system are computed using
C the truncation formulas:
C
C Ar = TI * A * T , Br = TI * B , Cr = C * T .
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOB CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root Balance & Truncate method;
C = 'N': use the balancing-free square-root
C Balance & Truncate method.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation, i.e.
C the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of the
C resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. NR is set as follows:
C if ORDSEL = 'F', NR is equal to MIN(NR,NMIN), where NR
C is the desired order on entry and NMIN is the order of a
C minimal realization of the given system; NMIN is
C determined as the number of Hankel singular values greater
C than N*EPS*HNORM(A,B,C), where EPS is the machine
C precision (see LAPACK Library Routine DLAMCH) and
C HNORM(A,B,C) is the Hankel norm of the system (computed
C in HSV(1));
C if ORDSEL = 'A', NR is equal to the number of Hankel
C singular values greater than MAX(TOL,N*EPS*HNORM(A,B,C)).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A in a real Schur
C canonical form.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the
C reduced order system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, it contains the Hankel singular values of
C the original system ordered decreasingly. HSV(1) is the
C Hankel norm of the system.
C
C T (output) DOUBLE PRECISION array, dimension (LDT,N)
C If INFO = 0 and NR > 0, the leading N-by-NR part of this
C array contains the right truncation matrix T.
C
C LDT INTEGER
C The leading dimension of array T. LDT >= MAX(1,N).
C
C TI (output) DOUBLE PRECISION array, dimension (LDTI,N)
C If INFO = 0 and NR > 0, the leading NR-by-N part of this
C array contains the left truncation matrix TI.
C
C LDTI INTEGER
C The leading dimension of array TI. LDTI >= MAX(1,N).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If ORDSEL = 'A', TOL contains the tolerance for
C determining the order of reduced system.
C For model reduction, the recommended value is
C TOL = c*HNORM(A,B,C), where c is a constant in the
C interval [0.00001,0.001], and HNORM(A,B,C) is the
C Hankel-norm of the given system (computed in HSV(1)).
C For computing a minimal realization, the recommended
C value is TOL = N*EPS*HNORM(A,B,C), where EPS is the
C machine precision (see LAPACK Library Routine DLAMCH).
C This value is used by default if TOL <= 0 on entry.
C If ORDSEL = 'F', the value of TOL is ignored.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK = 0, if JOB = 'B', or
C LIWORK = N, if JOB = 'N'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,N*(MAX(N,M,P)+5) + N*(N+1)/2).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than the order of a minimal realization of the
C given system. In this case, the resulting NR is
C set automatically to a value corresponding to the
C order of a minimal realization of the system.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the state matrix A is not stable (if DICO = 'C')
C or not convergent (if DICO = 'D');
C = 2: the computation of Hankel singular values failed.
C
C METHOD
C
C Let be the stable linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09AX determines for
C the given system (1), the matrices of a reduced NR order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) (2)
C
C such that
C
C HSV(NR) <= INFNORM(G-Gr) <= 2*[HSV(NR+1) + ... + HSV(N)],
C
C where G and Gr are transfer-function matrices of the systems
C (A,B,C) and (Ar,Br,Cr), respectively, and INFNORM(G) is the
C infinity-norm of G.
C
C If JOB = 'B', the square-root Balance & Truncate method of [1]
C is used and, for DICO = 'C', the resulting model is balanced.
C By setting TOL <= 0, the routine can be used to compute balanced
C minimal state-space realizations of stable systems.
C
C If JOB = 'N', the balancing-free square-root version of the
C Balance & Truncate method [2] is used.
C By setting TOL <= 0, the routine can be used to compute minimal
C state-space realizations of stable systems.
C
C REFERENCES
C
C [1] Tombs M.S. and Postlethwaite I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C [2] Varga A.
C Efficient minimal realization procedure based on balancing.
C Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
C A. El Moudui, P. Borne, S. G. Tzafestas (Eds.),
C Vol. 2, pp. 42-46.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root or
C balancing-free square-root techniques.
C 3
C The algorithms require less than 30N floating point operations.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, March 1998.
C Based on the RASP routines SRBT1 and SRBFT1.
C
C REVISIONS
C
C May 2, 1998.
C November 11, 1998, V. Sima, Research Institute for Informatics,
C Bucharest.
C December 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C February 14, 1999, A. Varga, German Aerospace Center.
C February 22, 1999, V. Sima, Research Institute for Informatics.
C February 27, 2000, V. Sima, Research Institute for Informatics.
C
C KEYWORDS
C
C Balancing, minimal state-space representation, model reduction,
C multivariable system, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDT, LDTI, LDWORK,
$ M, N, NR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*),
$ T(LDT,*), TI(LDTI,*)
C .. Local Scalars ..
LOGICAL BAL, DISCR, FIXORD, PACKED
INTEGER IERR, IJ, J, K, KTAU, KU, KV, KW, LDW, WRKOPT
DOUBLE PRECISION ATOL, RTOL, SCALEC, SCALEO, TEMP
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DGEMM, DGEMV, DGEQRF, DGETRF, DGETRS, DLACPY,
$ DORGQR, DSCAL, DTPMV, DTRMM, DTRMV, MA02AD,
$ MA02DD, MB03UD, SB03OU, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
BAL = LSAME( JOB, 'B' )
FIXORD = LSAME( ORDSEL, 'F' )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( BAL .OR. LSAME( JOB, 'N') ) ) THEN
INFO = -2
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( P.LT.0 ) THEN
INFO = -6
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -13
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDTI.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDWORK.LT.MAX( 1, N*( MAX( N, M, P ) + 5 ) +
$ ( N*( N + 1 ) )/2 ) ) THEN
INFO = -22
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09AX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 .OR. ( FIXORD .AND. NR.EQ.0 ) ) THEN
NR = 0
DWORK(1) = ONE
RETURN
END IF
C
RTOL = DBLE( N )*DLAMCH( 'Epsilon' )
C
C Allocate N*MAX(N,M,P) and N working storage for the matrices U
C and TAU, respectively.
C
KU = 1
KTAU = KU + N*MAX( N, M, P )
KW = KTAU + N
LDW = LDWORK - KW + 1
C
C Copy B in U.
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), N )
C
C If DISCR = .FALSE., solve for Su the Lyapunov equation
C 2
C A*(Su*Su') + (Su*Su')*A' + scalec *B*B' = 0 .
C
C If DISCR = .TRUE., solve for Su the Lyapunov equation
C 2
C A*(Su*Su')*A' + scalec *B*B' = Su*Su' .
C
C Workspace: need N*(MAX(N,M,P) + 5);
C prefer larger.
C
CALL SB03OU( DISCR, .TRUE., N, M, A, LDA, DWORK(KU), N,
$ DWORK(KTAU), TI, LDTI, SCALEC, DWORK(KW), LDW, IERR )
IF( IERR.NE.0 ) THEN
INFO = 1
RETURN
ENDIF
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C Copy C in U.
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KU), P )
C
C If DISCR = .FALSE., solve for Ru the Lyapunov equation
C 2
C A'*(Ru'*Ru) + (Ru'*Ru)*A + scaleo * C'*C = 0 .
C
C If DISCR = .TRUE., solve for Ru the Lyapunov equation
C 2
C A'*(Ru'*Ru)*A + scaleo * C'*C = Ru'*Ru .
C
C Workspace: need N*(MAX(N,M,P) + 5);
C prefer larger.
C
CALL SB03OU( DISCR, .FALSE., N, P, A, LDA, DWORK(KU), P,
$ DWORK(KTAU), T, LDT, SCALEO, DWORK(KW), LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Allocate N*(N+1)/2 (or, if possible, N*N) working storage for the
C matrix V, a packed (or unpacked) copy of Su, and save Su in V.
C (The locations for TAU are reused here.)
C
KV = KTAU
IF ( LDWORK-KV+1.LT.N*( N + 5 ) ) THEN
PACKED = .TRUE.
CALL MA02DD( 'Pack', 'Upper', N, TI, LDTI, DWORK(KV) )
KW = KV + ( N*( N + 1 ) )/2
ELSE
PACKED = .FALSE.
CALL DLACPY( 'Upper', N, N, TI, LDTI, DWORK(KV), N )
KW = KV + N*N
END IF
C | x x |
C Compute Ru*Su in the form | 0 x | in TI.
C
DO 10 J = 1, N
CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', J, T, LDT,
$ TI(1,J), 1 )
10 CONTINUE
C
C Compute the singular value decomposition Ru*Su = V*S*UT
C of the upper triangular matrix Ru*Su, with UT in TI and V in U.
C
C Workspace: need N*MAX(N,M,P) + N*(N+1)/2 + 5*N;
C prefer larger.
C
CALL MB03UD( 'Vectors', 'Vectors', N, TI, LDTI, DWORK(KU), N, HSV,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 2
RETURN
ENDIF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Scale singular values.
C
CALL DSCAL( N, ONE / SCALEC / SCALEO, HSV, 1 )
C
C Partition S, U and V conformally as:
C
C S = diag(S1,S2), U = [U1,U2] (U' in TI) and V = [V1,V2] (in U).
C
C Compute the order of reduced system, as the order of S1.
C
ATOL = RTOL*HSV(1)
IF( FIXORD ) THEN
IF( NR.GT.0 ) THEN
IF( HSV(NR).LE.ATOL ) THEN
NR = 0
IWARN = 1
FIXORD = .FALSE.
ENDIF
ENDIF
ELSE
ATOL = MAX( TOL, ATOL )
NR = 0
ENDIF
IF( .NOT.FIXORD ) THEN
DO 20 J = 1, N
IF( HSV(J).LE.ATOL ) GO TO 30
NR = NR + 1
20 CONTINUE
30 CONTINUE
ENDIF
C
IF( NR.EQ.0 ) THEN
DWORK(1) = WRKOPT
RETURN
END IF
C
C Compute the truncation matrices.
C
C Compute TI' = Ru'*V1 in U.
C
CALL DTRMM( 'Left', 'Upper', 'Transpose', 'NonUnit', N, NR, ONE,
$ T, LDT, DWORK(KU), N )
C
C Compute T = Su*U1 (with Su packed, if not enough workspace).
C
CALL MA02AD( 'Full', NR, N, TI, LDTI, T, LDT )
IF ( PACKED ) THEN
DO 40 J = 1, NR
CALL DTPMV( 'Upper', 'NoTranspose', 'NonUnit', N, DWORK(KV),
$ T(1,J), 1 )
40 CONTINUE
ELSE
CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', N, NR,
$ ONE, DWORK(KV), N, T, LDT )
END IF
C
IF( BAL ) THEN
IJ = KU
C
C Square-Root B & T method.
C
C Compute the truncation matrices for balancing
C -1/2 -1/2
C T*S1 and TI'*S1
C
DO 50 J = 1, NR
TEMP = ONE/SQRT( HSV(J) )
CALL DSCAL( N, TEMP, T(1,J), 1 )
CALL DSCAL( N, TEMP, DWORK(IJ), 1 )
IJ = IJ + N
50 CONTINUE
ELSE
C
C Balancing-Free B & T method.
C
C Compute orthogonal bases for the images of matrices T and TI'.
C
C Workspace: need N*MAX(N,M,P) + 2*NR;
C prefer N*MAX(N,M,P) + NR*(NB+1)
C (NB determined by ILAENV for DGEQRF).
C
KW = KTAU + NR
LDW = LDWORK - KW + 1
CALL DGEQRF( N, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW, IERR )
CALL DORGQR( N, NR, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
CALL DGEQRF( N, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
CALL DORGQR( N, NR, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW),
$ LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
END IF
C
C Transpose TI' to obtain TI.
C
CALL MA02AD( 'Full', N, NR, DWORK(KU), N, TI, LDTI )
C
IF( .NOT.BAL ) THEN
C -1
C Compute (TI*T) *TI in TI.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', NR, NR, N, ONE, TI,
$ LDTI, T, LDT, ZERO, DWORK(KU), N )
CALL DGETRF( NR, NR, DWORK(KU), N, IWORK, IERR )
CALL DGETRS( 'NoTranspose', NR, N, DWORK(KU), N, IWORK, TI,
$ LDTI, IERR )
END IF
C
C Compute TI*A*T (A is in RSF).
C
IJ = KU
DO 60 J = 1, N
K = MIN( J+1, N )
CALL DGEMV( 'NoTranspose', NR, K, ONE, TI, LDTI, A(1,J), 1,
$ ZERO, DWORK(IJ), 1 )
IJ = IJ + N
60 CONTINUE
CALL DGEMM( 'NoTranspose', 'NoTranspose', NR, NR, N, ONE,
$ DWORK(KU), N, T, LDT, ZERO, A, LDA )
C
C Compute TI*B and C*T.
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), N )
CALL DGEMM( 'NoTranspose', 'NoTranspose', NR, M, N, ONE, TI, LDTI,
$ DWORK(KU), N, ZERO, B, LDB )
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KU), P )
CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NR, N, ONE,
$ DWORK(KU), P, T, LDT, ZERO, C, LDC )
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of AB09AX ***
END
|