File: AB09CX.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (558 lines) | stat: -rw-r--r-- 19,829 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
      SUBROUTINE AB09CX( DICO, ORDSEL, N, M, P, NR, A, LDA, B, LDB,
     $                   C, LDC, D, LDD, HSV, TOL1, TOL2, IWORK,
     $                   DWORK, LDWORK, IWARN, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute a reduced order model (Ar,Br,Cr,Dr) for a stable
C     original state-space representation (A,B,C,D) by using the optimal
C     Hankel-norm approximation method in conjunction with square-root
C     balancing. The state dynamics matrix A of the original system is
C     an upper quasi-triangular matrix in real Schur canonical form.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the original system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     ORDSEL  CHARACTER*1
C             Specifies the order selection method as follows:
C             = 'F':  the resulting order NR is fixed;
C             = 'A':  the resulting order NR is automatically determined
C                     on basis of the given tolerance TOL1.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the original state-space representation, i.e.
C             the order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     NR      (input/output) INTEGER
C             On entry with ORDSEL = 'F', NR is the desired order of
C             the resulting reduced order system.  0 <= NR <= N.
C             On exit, if INFO = 0, NR is the order of the resulting
C             reduced order model. NR is set as follows:
C             if ORDSEL = 'F', NR is equal to MIN(MAX(0,NR-KR+1),NMIN),
C             where KR is the multiplicity of the Hankel singular value
C             HSV(NR+1), NR is the desired order on entry, and NMIN is
C             the order of a minimal realization of the given system;
C             NMIN is determined as the number of Hankel singular values
C             greater than N*EPS*HNORM(A,B,C), where EPS is the machine
C             precision (see LAPACK Library Routine DLAMCH) and
C             HNORM(A,B,C) is the Hankel norm of the system (computed
C             in HSV(1));
C             if ORDSEL = 'A', NR is equal to the number of Hankel
C             singular values greater than MAX(TOL1,N*EPS*HNORM(A,B,C)).
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A in a real Schur
C             canonical form.
C             On exit, if INFO = 0, the leading NR-by-NR part of this
C             array contains the state dynamics matrix Ar of the
C             reduced order system in a real Schur form.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the original input/state matrix B.
C             On exit, if INFO = 0, the leading NR-by-M part of this
C             array contains the input/state matrix Br of the reduced
C             order system.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the original state/output matrix C.
C             On exit, if INFO = 0, the leading P-by-NR part of this
C             array contains the state/output matrix Cr of the reduced
C             order system.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the original input/output matrix D.
C             On exit, if INFO = 0, the leading P-by-M part of this
C             array contains the input/output matrix Dr of the reduced
C             order system.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     HSV     (output) DOUBLE PRECISION array, dimension (N)
C             If INFO = 0, it contains the Hankel singular values of
C             the original system ordered decreasingly. HSV(1) is the
C             Hankel norm of the system.
C
C     Tolerances
C
C     TOL1    DOUBLE PRECISION
C             If ORDSEL = 'A', TOL1 contains the tolerance for
C             determining the order of reduced system.
C             For model reduction, the recommended value is
C             TOL1 = c*HNORM(A,B,C), where c is a constant in the
C             interval [0.00001,0.001], and HNORM(A,B,C) is the
C             Hankel-norm of the given system (computed in HSV(1)).
C             For computing a minimal realization, the recommended
C             value is TOL1 = N*EPS*HNORM(A,B,C), where EPS is the
C             machine precision (see LAPACK Library Routine DLAMCH).
C             This value is used by default if TOL1 <= 0 on entry.
C             If ORDSEL = 'F', the value of TOL1 is ignored.
C
C     TOL2    DOUBLE PRECISION
C             The tolerance for determining the order of a minimal
C             realization of the given system. The recommended value is
C             TOL2 = N*EPS*HNORM(A,B,C). This value is used by default
C             if TOL2 <= 0 on entry.
C             If TOL2 > 0, then TOL2 <= TOL1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK)
C             LIWORK = MAX(1,M),   if DICO = 'C';
C             LIWORK = MAX(1,N,M), if DICO = 'D'.
C             On exit, if INFO = 0, IWORK(1) contains NMIN, the order of
C             the computed minimal realization.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX( LDW1,LDW2 ), where
C             LDW1 = N*(2*N+MAX(N,M,P)+5) + N*(N+1)/2,
C             LDW2 = N*(M+P+2) + 2*M*P + MIN(N,M) +
C                    MAX( 3*M+1, MIN(N,M)+P ).
C             For optimum performance LDWORK should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  with ORDSEL = 'F', the selected order NR is greater
C                   than the order of a minimal realization of the
C                   given system. In this case, the resulting NR is set
C                   automatically to a value corresponding to the order
C                   of a minimal realization of the system.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the state matrix A is not stable (if DICO = 'C')
C                   or not convergent (if DICO = 'D');
C             = 2:  the computation of Hankel singular values failed;
C             = 3:  the computation of stable projection failed;
C             = 4:  the order of computed stable projection differs
C                   from the order of Hankel-norm approximation.
C
C     METHOD
C
C     Let be the stable linear system
C
C          d[x(t)] = Ax(t) + Bu(t)
C          y(t)    = Cx(t) + Du(t)                           (1)
C
C     where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C     for a discrete-time system. The subroutine AB09CX determines for
C     the given system (1), the matrices of a reduced order system
C
C          d[z(t)] = Ar*z(t) + Br*u(t)
C          yr(t)   = Cr*z(t) + Dr*u(t)                       (2)
C
C     such that
C
C           HSV(NR) <= INFNORM(G-Gr) <= 2*[HSV(NR+1) + ... + HSV(N)],
C
C     where G and Gr are transfer-function matrices of the systems
C     (A,B,C,D) and (Ar,Br,Cr,Dr), respectively, and INFNORM(G) is the
C     infinity-norm of G.
C
C     The optimal Hankel-norm approximation method of [1], based on the
C     square-root balancing projection formulas of [2], is employed.
C
C     REFERENCES
C
C     [1] Glover, K.
C         All optimal Hankel norm approximation of linear
C         multivariable systems and their L-infinity error bounds.
C         Int. J. Control, Vol. 36, pp. 1145-1193, 1984.
C
C     [2] Tombs M.S. and Postlethwaite I.
C         Truncated balanced realization of stable, non-minimal
C         state-space systems.
C         Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C     NUMERICAL ASPECTS
C
C     The implemented methods rely on an accuracy enhancing square-root
C     technique.
C                                         3
C     The algorithms require less than 30N  floating point operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, April 1998.
C     Based on the RASP routine OHNAP1.
C
C     REVISIONS
C
C     November 11, 1998, V. Sima, Research Institute for Informatics,
C     Bucharest.
C     April 24, 2000, A. Varga, DLR Oberpfaffenhofen.
C     April  8, 2001, A. Varga, DLR Oberpfaffenhofen.
C     March 26, 2005, V. Sima, Research Institute for Informatics.
C
C     KEYWORDS
C
C     Balancing, Hankel-norm approximation, model reduction,
C     multivariable system, state-space model.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, ORDSEL
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDD, LDWORK,
     $                  M, N, NR, P
      DOUBLE PRECISION  TOL1, TOL2
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), HSV(*)
C     .. Local Scalars
      LOGICAL           DISCR, FIXORD
      INTEGER           I, I1, IERR, IRANK, J, KB1, KB2, KC1, KC2T,
     $                  KHSVP, KHSVP2, KR, KT, KTI, KU, KW, KW1, KW2,
     $                  LDB1, LDB2, LDC1, LDC2T, NA, NDIM, NKR1, NMINR,
     $                  NR1, NU, WRKOPT
      DOUBLE PRECISION  ATOL, RTOL, SKP, SKP2, SRRTOL
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH, LSAME
C     .. External Subroutines ..
      EXTERNAL          AB04MD, AB09AX, DAXPY, DCOPY, DGELSY, DGEMM,
     $                  DLACPY, DSWAP, MA02AD, MB01SD, TB01KD, TB01WD,
     $                  XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, INT, MAX, MIN, SQRT
C     .. Executable Statements ..
C
      INFO   = 0
      IWARN  = 0
      DISCR  = LSAME( DICO,   'D' )
      FIXORD = LSAME( ORDSEL, 'F' )
C
C     Check the input scalar arguments.
C
      IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -12
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -14
      ELSE IF( TOL2.GT.ZERO .AND. TOL2.GT.TOL1 ) THEN
         INFO = -17
      ELSE IF( LDWORK.LT.MAX( N*( 2*N + MAX( N, M, P ) + 5 ) +
     $                        ( N*( N + 1 ) )/2,
     $                        N*( M + P + 2 ) + 2*M*P + MIN( N, M ) +
     $                        MAX ( 3*M + 1, MIN( N, M ) + P ) ) ) THEN
         INFO = -20
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB09CX', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( N, M, P ).EQ.0 ) THEN
         NR = 0
         IWORK(1) = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
      RTOL   = DBLE( N )*DLAMCH( 'Epsilon' )
      SRRTOL = SQRT( RTOL )
C
C     Allocate working storage.
C
      KT  = 1
      KTI = KT  + N*N
      KW  = KTI + N*N
C
C     Compute a minimal order balanced realization of the given system.
C     Workspace: need   N*(2*N+MAX(N,M,P)+5) + N*(N+1)/2;
C                prefer larger.
C
      CALL AB09AX( DICO, 'Balanced', 'Automatic', N, M, P, NMINR, A,
     $             LDA, B, LDB, C, LDC, HSV, DWORK(KT), N, DWORK(KTI),
     $             N, TOL2, IWORK, DWORK(KW), LDWORK-KW+1, IWARN, INFO )
C
      IF( INFO.NE.0 )
     $   RETURN
      WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C     Compute the order of reduced system.
C
      ATOL = RTOL*HSV(1)
      IF( FIXORD ) THEN
         IF( NR.GT.0 ) THEN
            IF( NR.GT.NMINR ) THEN
               NR = NMINR
               IWARN = 1
            ENDIF
         ENDIF
      ELSE
         ATOL = MAX( TOL1, ATOL )
         NR = 0
         DO 10 I = 1, NMINR
            IF( HSV(I).LE.ATOL ) GO TO 20
            NR = NR + 1
   10    CONTINUE
   20    CONTINUE
      ENDIF
C
      IF( NR.EQ.NMINR ) THEN
         IWORK(1) = NMINR
         DWORK(1) = WRKOPT
         KW = N*(N+2)+1
C
C        Reduce Ar to a real Schur form.
C
         CALL TB01WD( NMINR, M, P, A, LDA, B, LDB, C, LDC,
     $                DWORK(2*N+1), N, DWORK, DWORK(N+1), DWORK(KW),
     $                LDWORK-KW+1, IERR )
         IF( IERR.NE.0 ) THEN
            INFO = 3
            RETURN
         END IF
         RETURN
      END IF
      SKP = HSV(NR+1)
C
C     If necessary, reduce the order such that HSV(NR) > HSV(NR+1).
C
   30 IF( NR.GT.0 ) THEN
         IF( ABS( HSV(NR)-SKP ).LE.SRRTOL*SKP ) THEN
            NR = NR - 1
            GO TO 30
         END IF
      END IF
C
C     Determine KR, the multiplicity of HSV(NR+1).
C
      KR = 1
      DO 40 I = NR+2, NMINR
         IF( ABS( HSV(I)-SKP ).GT.SRRTOL*SKP ) GO TO 50
         KR = KR + 1
   40 CONTINUE
   50 CONTINUE
C
C     For discrete-time case, apply the discrete-to-continuous bilinear
C     transformation.
C
      IF( DISCR ) THEN
C
C        Workspace: need   N;
C                   prefer larger.
C
         CALL AB04MD( 'Discrete', NMINR, M, P, ONE, ONE, A, LDA, B, LDB,
     $                C, LDC, D, LDD, IWORK, DWORK, LDWORK, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
      END IF
C
C     Define leading dimensions and offsets for temporary data.
C
      NU     = NMINR - NR - KR
      NA     = NR + NU
      LDB1   = NA
      LDC1   = P
      LDB2   = KR
      LDC2T  = MAX( KR, M )
      NR1    = NR  + 1
      NKR1   = MIN( NMINR, NR1 + KR )
C
      KHSVP  = 1
      KHSVP2 = KHSVP  + NA
      KU     = KHSVP2 + NA
      KB1    = KU     + P*M
      KB2    = KB1    + LDB1*M
      KC1    = KB2    + LDB2*M
      KC2T   = KC1    + LDC1*NA
      KW     = KC2T   + LDC2T*P
C
C     Save B2 and C2'.
C
      CALL DLACPY( 'Full', KR, M, B(NR1,1), LDB, DWORK(KB2), LDB2 )
      CALL MA02AD( 'Full', P, KR, C(1,NR1), LDC, DWORK(KC2T), LDC2T )
      IF( NR.GT.0 ) THEN
C
C        Permute the elements of HSV and of matrices A, B, C.
C
         CALL DCOPY( NR, HSV(1), 1, DWORK(KHSVP), 1 )
         CALL DCOPY( NU, HSV(NKR1), 1, DWORK(KHSVP+NR), 1 )
         CALL DLACPY( 'Full', NMINR, NU, A(1,NKR1), LDA, A(1,NR1), LDA )
         CALL DLACPY( 'Full', NU, NA, A(NKR1,1), LDA, A(NR1,1), LDA )
         CALL DLACPY( 'Full', NU, M, B(NKR1,1), LDB, B(NR1,1), LDB )
         CALL DLACPY( 'Full', P, NU, C(1,NKR1), LDC, C(1,NR1), LDC )
C
C        Save B1 and C1.
C
         CALL DLACPY( 'Full', NA, M, B, LDB, DWORK(KB1), LDB1 )
         CALL DLACPY( 'Full', P, NA, C, LDC, DWORK(KC1), LDC1 )
      END IF
C
C     Compute U = C2*pinv(B2').
C     Workspace: need   N*(M+P+2) + 2*M*P +
C                       max(min(KR,M)+3*M+1,2*min(KR,M)+P);
C                prefer N*(M+P+2) + 2*M*P +
C                       max(min(KR,M)+2*M+(M+1)*NB,2*min(KR,M)+P*NB),
C                where  NB  is the maximum of the block sizes for
C                DGEQP3, DTZRZF, DTZRQF, DORMQR, and DORMRZ.
C
      DO 55 J = 1, M
         IWORK(J) = 0
   55 CONTINUE
      CALL DGELSY( KR, M, P, DWORK(KB2), LDB2, DWORK(KC2T), LDC2T,
     $             IWORK, RTOL, IRANK, DWORK(KW), LDWORK-KW+1, IERR )
      WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
      CALL MA02AD( 'Full', M, P, DWORK(KC2T), LDC2T, DWORK(KU), P )
C
C     Compute D <- D + HSV(NR+1)*U.
C
      I = KU
      DO 60 J = 1, M
         CALL DAXPY( P, SKP, DWORK(I), 1, D(1,J), 1 )
         I = I + P
   60 CONTINUE
C
      IF( NR.GT.0 ) THEN
         SKP2 = SKP*SKP
C
C        Compute G = inv(S1*S1-skp*skp*I), where S1 is the diagonal
C        matrix of relevant singular values (of order NMINR - KR).
C
         I1 = KHSVP2
         DO 70 I = KHSVP, KHSVP+NA-1
            DWORK(I1) = ONE / ( DWORK(I)*DWORK(I) - SKP2 )
            I1 = I1 + 1
   70    CONTINUE
C
C        Compute C <- C1*S1-skp*U*B1'.
C
         CALL MB01SD( 'Column', P, NA, C, LDC, DWORK, DWORK(KHSVP) )
         CALL DGEMM( 'NoTranspose', 'Transpose', P, NA, M, -SKP,
     $               DWORK(KU), P, DWORK(KB1), LDB1, ONE, C, LDC )
C
C        Compute B <- G*(S1*B1-skp*C1'*U).
C
         CALL MB01SD( 'Row', NA, M, B, LDB, DWORK(KHSVP), DWORK )
         CALL DGEMM( 'Transpose', 'NoTranspose', NA, M, P, -SKP,
     $               DWORK(KC1), LDC1, DWORK(KU), P, ONE, B, LDB )
         CALL MB01SD( 'Row', NA, M, B, LDB, DWORK(KHSVP2), DWORK )
C
C        Compute A <- -A1' - B*B1'.
C
         DO 80 J = 2, NA
            CALL DSWAP( J-1, A(1,J), 1, A(J,1), LDA )
   80    CONTINUE
         CALL DGEMM( 'NoTranspose', 'Transpose', NA, NA, M, -ONE, B,
     $               LDB, DWORK(KB1), LDB1, -ONE, A, LDA )
C
C        Extract stable part.
C        Workspace:  need   N*N+5*N;
C                    prefer larger.
C
         KW1 = NA*NA + 1
         KW2 = KW1 + NA
         KW  = KW2 + NA
         CALL TB01KD( 'Continuous', 'Stability', 'General', NA, M, P,
     $                ZERO, A, LDA, B, LDB, C, LDC, NDIM, DWORK, NA,
     $                DWORK(KW1), DWORK(KW2), DWORK(KW), LDWORK-KW+1,
     $                IERR )
         IF( IERR.NE.0 ) THEN
            INFO = 3
            RETURN
         END IF
C
         IF( NDIM.NE.NR ) THEN
            INFO = 4
            RETURN
         END IF
         WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C        For discrete-time case, apply the continuous-to-discrete
C        bilinear transformation.
C
         IF( DISCR )
     $      CALL AB04MD( 'Continuous', NR, M, P, ONE, ONE, A, LDA, B,
     $                   LDB, C, LDC, D, LDD, IWORK, DWORK, LDWORK,
     $                   INFO )
      END IF
      IWORK(1) = NMINR
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of AB09CX ***
      END