File: AB09FD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (649 lines) | stat: -rw-r--r-- 25,180 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
      SUBROUTINE AB09FD( DICO, JOBCF, FACT, JOBMR, EQUIL, ORDSEL, N, M,
     $                   P, NR, ALPHA, A, LDA, B, LDB, C, LDC, NQ, HSV,
     $                   TOL1, TOL2, IWORK, DWORK, LDWORK, IWARN, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute a reduced order model (Ar,Br,Cr) for an original
C     state-space representation (A,B,C) by using either the square-root
C     or the balancing-free square-root Balance & Truncate (B & T)
C     model reduction method in conjunction with stable coprime
C     factorization techniques.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the original system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     JOBCF   CHARACTER*1
C             Specifies whether left or right coprime factorization is
C             to be used as follows:
C             = 'L':  use left coprime factorization;
C             = 'R':  use right coprime factorization.
C
C     FACT    CHARACTER*1
C             Specifies the type of coprime factorization to be computed
C             as follows:
C             = 'S':  compute a coprime factorization with prescribed
C                     stability degree ALPHA;
C             = 'I':  compute a coprime factorization with inner
C                     denominator.
C
C     JOBMR   CHARACTER*1
C             Specifies the model reduction approach to be used
C             as follows:
C             = 'B':  use the square-root Balance & Truncate method;
C             = 'N':  use the balancing-free square-root
C                     Balance & Truncate method.
C
C     EQUIL   CHARACTER*1
C             Specifies whether the user wishes to preliminarily
C             equilibrate the triplet (A,B,C) as follows:
C             = 'S':  perform equilibration (scaling);
C             = 'N':  do not perform equilibration.
C
C     ORDSEL  CHARACTER*1
C             Specifies the order selection method as follows:
C             = 'F':  the resulting order NR is fixed;
C             = 'A':  the resulting order NR is automatically determined
C                     on basis of the given tolerance TOL1.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the original state-space representation, i.e.
C             the order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     NR      (input/output) INTEGER
C             On entry with ORDSEL = 'F', NR is the desired order of the
C             resulting reduced order system.  0 <= NR <= N.
C             On exit, if INFO = 0, NR is the order of the resulting
C             reduced order model. NR is set as follows:
C             if ORDSEL = 'F', NR is equal to MIN(NR,NQ,NMIN), where NR
C             is the desired order on entry, NQ is the order of the
C             computed coprime factorization of the given system, and
C             NMIN is the order of a minimal realization of the extended
C             system (see METHOD); NMIN is determined as the number of
C             Hankel singular values greater than NQ*EPS*HNORM(Ge),
C             where EPS is the machine precision (see LAPACK Library
C             Routine DLAMCH) and HNORM(Ge) is the Hankel norm of the
C             extended system (computed in HSV(1));
C             if ORDSEL = 'A', NR is equal to the number of Hankel
C             singular values greater than MAX(TOL1,NQ*EPS*HNORM(Ge)).
C
C     ALPHA   (input) DOUBLE PRECISION
C             If FACT = 'S', the desired stability degree for the
C             factors of the coprime factorization (see SLICOT Library
C             routines SB08ED/SB08FD).
C             ALPHA < 0 for a continuous-time system (DICO = 'C'), and
C             0 <= ALPHA < 1 for a discrete-time system (DICO = 'D').
C             If FACT = 'I', ALPHA is not used.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the original state dynamics matrix A.
C             On exit, if INFO = 0, the leading NR-by-NR part of this
C             array contains the state dynamics matrix Ar of the reduced
C             order system.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the original input/state matrix B.
C             On exit, if INFO = 0, the leading NR-by-M part of this
C             array contains the input/state matrix Br of the reduced
C             order system.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the original state/output matrix C.
C             On exit, if INFO = 0, the leading P-by-NR part of this
C             array contains the state/output matrix Cr of the reduced
C             order system.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     NQ      (output) INTEGER
C             The order of the computed extended system Ge (see METHOD).
C
C     HSV     (output) DOUBLE PRECISION array, dimension (N)
C             If INFO = 0, it contains the NQ Hankel singular values of
C             the extended system Ge ordered decreasingly (see METHOD).
C
C     Tolerances
C
C     TOL1    DOUBLE PRECISION
C             If ORDSEL = 'A', TOL1 contains the tolerance for
C             determining the order of reduced extended system.
C             For model reduction, the recommended value is
C             TOL1 = c*HNORM(Ge), where c is a constant in the
C             interval [0.00001,0.001], and HNORM(Ge) is the
C             Hankel-norm of the extended system (computed in HSV(1)).
C             The value TOL1 = NQ*EPS*HNORM(Ge) is used by default if
C             TOL1 <= 0 on entry, where EPS is the machine precision
C             (see LAPACK Library Routine DLAMCH).
C             If ORDSEL = 'F', the value of TOL1 is ignored.
C
C     TOL2    DOUBLE PRECISION
C             The absolute tolerance level below which the elements of
C             B or C are considered zero (used for controllability or
C             observability tests).
C             If the user sets TOL2 <= 0, then an implicitly computed,
C             default tolerance TOLDEF is used:
C             TOLDEF = N*EPS*NORM(C'), if JOBCF = 'L', or
C             TOLDEF = N*EPS*NORM(B),  if JOBCF = 'R',
C             where EPS is the machine precision, and NORM(.) denotes
C             the 1-norm of a matrix.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK)
C             LIWORK = PM,        if JOBMR = 'B',
C             LIWORK = MAX(N,PM), if JOBMR = 'N', where
C             PM = P, if JOBCF = 'L',
C             PM = M, if JOBCF = 'R'.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,LW1) if JOBCF = 'L' and FACT = 'S',
C             LDWORK >= MAX(1,LW2) if JOBCF = 'L' and FACT = 'I',
C             LDWORK >= MAX(1,LW3) if JOBCF = 'R' and FACT = 'S',
C             LDWORK >= MAX(1,LW4) if JOBCF = 'R' and FACT = 'I', where
C             LW1 = N*(2*MAX(M,P) + P) + MAX(M,P)*(MAX(M,P) + P) +
C                   MAX( N*P+MAX(N*(N+5), 5*P, 4*M), LWR ),
C             LW2 = N*(2*MAX(M,P) + P) + MAX(M,P)*(MAX(M,P) + P) +
C                   MAX( N*P+MAX(N*(N+5), P*(P+2), 4*P, 4*M), LWR ),
C             LW3 = (N+M)*(M+P) + MAX( 5*M, 4*P, LWR ),
C             LW4 = (N+M)*(M+P) + MAX( M*(M+2), 4*M, 4*P, LWR ), and
C             LWR = 2*N*N + N*(MAX(N,M+P)+5) + N*(N+1)/2.
C             For optimum performance LDWORK should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 10*K+I:
C               I = 1:  with ORDSEL = 'F', the selected order NR is
C                       greater than the order of the computed coprime
C                       factorization of the given system. In this case,
C                       the resulting NR is set automatically to a value
C                       corresponding to the order of a minimal
C                       realization of the system;
C               K > 0:  K violations of the numerical stability
C                       condition occured when computing the coprime
C                       factorization using pole assignment (see SLICOT
C                       Library routines SB08CD/SB08ED, SB08DD/SB08FD).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction of A to a real Schur form failed;
C             = 2:  a failure was detected during the ordering of the
C                   real Schur form of A, or in the iterative process
C                   for reordering the eigenvalues of Z'*(A + H*C)*Z
C                   (or Z'*(A + B*F)*Z) along the diagonal; see SLICOT
C                   Library routines SB08CD/SB08ED (or SB08DD/SB08FD);
C             = 3:  the matrix A has an observable or controllable
C                   eigenvalue on the imaginary axis if DICO = 'C' or
C                   on the unit circle if DICO = 'D';
C             = 4:  the computation of Hankel singular values failed.
C
C     METHOD
C
C     Let be the linear system
C
C          d[x(t)] = Ax(t) + Bu(t)
C          y(t)    = Cx(t)                               (1)
C
C     where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C     for a discrete-time system, and let G be the corresponding
C     transfer-function matrix. The subroutine AB09FD determines
C     the matrices of a reduced order system
C
C          d[z(t)] = Ar*z(t) + Br*u(t)
C          yr(t)   = Cr*z(t)                             (2)
C
C     with the transfer-function matrix Gr, by using the
C     balanced-truncation model reduction method in conjunction with
C     a left coprime factorization (LCF) or a right coprime
C     factorization (RCF) technique:
C
C     1. Compute the appropriate stable coprime factorization of G:
C                     -1                   -1
C                G = R  *Q (LCF) or G = Q*R   (RCF).
C
C     2. Perform the model reduction algorithm on the extended system
C                                           ( Q )
C                Ge = ( Q R ) (LCF) or Ge = ( R )  (RCF)
C
C        to obtain a reduced extended system with reduced factors
C                                               ( Qr )
C                Ger = ( Qr Rr ) (LCF) or Ger = ( Rr )  (RCF).
C
C     3. Recover the reduced system from the reduced factors as
C                       -1                       -1
C                Gr = Rr  *Qr (LCF) or Gr = Qr*Rr   (RCF).
C
C     The approximation error for the extended system satisfies
C
C        HSV(NR) <= INFNORM(Ge-Ger) <= 2*[HSV(NR+1) + ... + HSV(NQ)],
C
C     where INFNORM(G) is the infinity-norm of G.
C
C     If JOBMR = 'B', the square-root Balance & Truncate method of [1]
C     is used for model reduction.
C     If JOBMR = 'N', the balancing-free square-root version of the
C     Balance & Truncate method [2] is used for model reduction.
C
C     If FACT = 'S', the stable coprime factorization with prescribed
C     stability degree ALPHA is computed by using the algorithm of [3].
C     If FACT = 'I', the stable coprime factorization with inner
C     denominator is computed by using the algorithm of [4].
C
C     REFERENCES
C
C     [1] Tombs M.S. and Postlethwaite I.
C         Truncated balanced realization of stable, non-minimal
C         state-space systems.
C         Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C     [2] Varga A.
C         Efficient minimal realization procedure based on balancing.
C         Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
C         A. El Moudui, P. Borne, S. G. Tzafestas (Eds.), Vol. 2,
C         pp. 42-46, 1991.
C
C     [3] Varga A.
C         Coprime factors model reduction method based on square-root
C         balancing-free techniques.
C         System Analysis, Modelling and Simulation, Vol. 11,
C         pp. 303-311, 1993.
C
C     [4] Varga A.
C         A Schur method for computing coprime factorizations with
C         inner denominators and applications in model reduction.
C         Proc. ACC'93, San Francisco, CA, pp. 2130-2131, 1993.
C
C     NUMERICAL ASPECTS
C
C     The implemented methods rely on accuracy enhancing square-root or
C     balancing-free square-root techniques.
C                                         3
C     The algorithms require less than 30N  floating point operations.
C
C     CONTRIBUTOR
C
C     C. Oara and A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, August 1998.
C
C     REVISIONS
C
C     Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C     Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C
C     KEYWORDS
C
C     Balancing, coprime factorization, minimal realization,
C     model reduction, multivariable system, state-space model.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  C100, ONE, ZERO
      PARAMETER         ( C100 = 100.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, EQUIL, FACT, JOBCF, JOBMR, ORDSEL
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDWORK, M, N, NQ,
     $                  NR, P
      DOUBLE PRECISION  ALPHA, TOL1, TOL2
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*)
C     .. Local Scalars ..
      LOGICAL           DISCR, FIXORD, LEFT, STABD
      INTEGER           IERR, IWARNK, KB, KBR, KBT, KC, KCR, KD, KDR,
     $                  KDT, KT, KTI, KW, LW1, LW2, LW3, LW4, LWR,
     $                  MAXMP, MP, NDR, PM, WRKOPT
      DOUBLE PRECISION  MAXRED
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          AB09AX, DLACPY, DLASET, SB08CD, SB08DD, SB08ED,
     $                  SB08FD, SB08GD, SB08HD, TB01ID, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C     .. Executable Statements ..
C
      INFO   = 0
      IWARN  = 0
      DISCR  = LSAME( DICO,   'D' )
      FIXORD = LSAME( ORDSEL, 'F' )
      LEFT   = LSAME( JOBCF,  'L' )
      STABD  = LSAME( FACT,   'S' )
      MAXMP  = MAX( M, P )
C
      LWR = 2*N*N + N*( MAX( N, M + P ) + 5 ) + ( N*( N + 1 ) )/2
      LW1 = N*( 2*MAXMP + P ) + MAXMP*( MAXMP + P )
      LW2 = LW1 +
     $      MAX( N*P + MAX( N*( N + 5 ), P*( P+2 ), 4*P, 4*M ), LWR )
      LW1 = LW1 + MAX( N*P + MAX( N*( N + 5 ), 5*P, 4*M ), LWR )
      LW3 = ( N + M )*( M + P ) + MAX( 5*M, 4*P, LWR )
      LW4 = ( N + M )*( M + P ) + MAX( M*( M + 2 ), 4*M, 4*P, LWR )
C
C     Test the input scalar arguments.
C
      IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( LEFT .OR. LSAME( JOBCF, 'R' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT. ( STABD .OR. LSAME( FACT, 'I' ) ) ) THEN
         INFO = -3
      ELSE IF( .NOT. ( LSAME( JOBMR, 'B' ) .OR.
     $                 LSAME( JOBMR, 'N' ) ) ) THEN
         INFO = -4
      ELSE IF( .NOT. ( LSAME( EQUIL, 'S' ) .OR.
     $                 LSAME( EQUIL, 'N' ) ) ) THEN
         INFO = -5
      ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
         INFO = -6
      ELSE IF( STABD .AND. ( ( .NOT.DISCR .AND. ALPHA.GE.ZERO ) .OR.
     $       ( DISCR .AND. ( ALPHA.LT.ZERO .OR. ALPHA.GE.ONE ) ) ) )
     $      THEN
         INFO = -7
      ELSE IF( N.LT.0 ) THEN
         INFO = -8
      ELSE IF( M.LT.0 ) THEN
         INFO = -9
      ELSE IF( P.LT.0 ) THEN
         INFO = -10
      ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
         INFO = -11
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -13
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -15
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -17
      ELSE IF( ( LDWORK.LT.1 ) .OR.
     $   (      STABD .AND.      LEFT .AND. LDWORK.LT.LW1 ) .OR.
     $   ( .NOT.STABD .AND.      LEFT .AND. LDWORK.LT.LW2 ) .OR.
     $   (      STABD .AND. .NOT.LEFT .AND. LDWORK.LT.LW3 ) .OR.
     $   ( .NOT.STABD .AND. .NOT.LEFT .AND. LDWORK.LT.LW4 ) ) THEN
         INFO = -24
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB09FD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( N, M, P ).EQ.0 .OR. ( FIXORD .AND. NR.EQ.0 ) ) THEN
         NR = 0
         NQ = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
      IF( LSAME( EQUIL, 'S' ) ) THEN
C
C        Scale simultaneously the matrices A, B and C:
C        A <- inv(D)*A*D,  B <- inv(D)*B and C <- C*D, where D is a
C        diagonal matrix.
C
         MAXRED = C100
         CALL TB01ID( 'A', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
     $                DWORK, INFO )
      END IF
C
C     Perform the coprime factor model reduction procedure.
C
      KD = 1
      IF( LEFT ) THEN
C                           -1
C        Compute a LCF G = R  *Q.
C
         MP  = M + P
         KDR = KD  + MAXMP*MAXMP
         KC  = KDR + MAXMP*P
         KB  = KC  + MAXMP*N
         KBR = KB  + N*MAXMP
         KW  = KBR + N*P
         LWR = LDWORK - KW + 1
         CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KB), N )
         CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KC), MAXMP )
         CALL DLASET( 'Full', P, M, ZERO, ZERO, DWORK(KD), MAXMP )
C
         IF( STABD ) THEN
C
C           Compute a LCF with prescribed stability degree.
C
C           Workspace needed:      N*(2*MAX(M,P)+P) +
C                                  MAX(M,P)*(MAX(M,P)+P);
C           Additional workspace:  need   N*P+MAX(N*(N+5),5*P,4*M);
C                                  prefer larger.
C
            CALL SB08ED( DICO, N, M, P, ALPHA, A, LDA, DWORK(KB), N,
     $                   DWORK(KC), MAXMP, DWORK(KD), MAXMP, NQ, NDR,
     $                   DWORK(KBR), N, DWORK(KDR), MAXMP, TOL2,
     $                   DWORK(KW), LWR, IWARN, INFO )
         ELSE
C
C           Compute a LCF with inner denominator.
C
C           Workspace needed:      N*(2*MAX(M,P)+P) +
C                                  MAX(M,P)*(MAX(M,P)+P);
C           Additional workspace:  need   N*P +
C                                         MAX(N*(N+5),P*(P+2),4*P,4*M).
C                                  prefer larger;
C
            CALL SB08CD( DICO, N, M, P, A, LDA, DWORK(KB), N,
     $                   DWORK(KC), MAXMP, DWORK(KD), MAXMP, NQ, NDR,
     $                   DWORK(KBR), N, DWORK(KDR), MAXMP, TOL2,
     $                   DWORK(KW), LWR, IWARN, INFO )
         END IF
C
         IWARN = 10*IWARN
         IF( INFO.NE.0 )
     $      RETURN
C
         WRKOPT = INT( DWORK(KW) ) + KW - 1
C
         IF( NQ.EQ.0 ) THEN
            NR = 0
            DWORK(1) = WRKOPT
            RETURN
         END IF
C
         IF( MAXMP.GT.M ) THEN
C
C           Form the matrices ( BQ, BR ) and ( DQ, DR ) in consecutive
C           columns (see SLICOT Library routines SB08CD/SB08ED).
C
            KBT = KBR
            KBR = KB + N*M
            KDT = KDR
            KDR = KD + MAXMP*M
            CALL DLACPY( 'Full', NQ, P, DWORK(KBT), N, DWORK(KBR), N )
            CALL DLACPY( 'Full', P, P, DWORK(KDT), MAXMP, DWORK(KDR),
     $                   MAXMP )
         END IF
C
C        Perform model reduction on ( Q, R ) to determine ( Qr, Rr ).
C
C        Workspace needed:      N*(2*MAX(M,P)+P) +
C                               MAX(M,P)*(MAX(M,P)+P) + 2*N*N;
C        Additional workspace:  need   N*(MAX(N,M+P)+5) + N*(N+1)/2;
C                               prefer larger.
C
         KT  = KW
         KTI = KT  + NQ*NQ
         KW  = KTI + NQ*NQ
         CALL AB09AX( DICO, JOBMR, ORDSEL, NQ, MP, P, NR, A, LDA,
     $                DWORK(KB), N, DWORK(KC), MAXMP, HSV, DWORK(KT),
     $                N, DWORK(KTI), N, TOL1, IWORK, DWORK(KW),
     $                LDWORK-KW+1, IWARNK, IERR )
C
         IWARN = IWARN + IWARNK
         IF( IERR.NE.0 ) THEN
            INFO = 4
            RETURN
         END IF
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C                                                -1
C        Compute the reduced order system Gr = Rr  *Qr.
C
C        Workspace needed:      N*(2*MAX(M,P)+P) +
C                               MAX(M,P)*(MAX(M,P)+P);
C        Additional workspace:  need   4*P.
C
         KW = KT
         CALL SB08GD( NR, M, P, A, LDA, DWORK(KB), N, DWORK(KC), MAXMP,
     $                DWORK(KD), MAXMP, DWORK(KBR), N, DWORK(KDR),
     $                MAXMP, IWORK, DWORK(KW), INFO )
C
C        Copy the reduced system matrices Br and Cr to B and C.
C
         CALL DLACPY( 'Full', NR, M, DWORK(KB), N, B, LDB )
         CALL DLACPY( 'Full', P, NR, DWORK(KC), MAXMP, C, LDC )
C
      ELSE
C                             -1
C        Compute a RCF G = Q*R  .
C
         PM  = P  + M
         KDR = KD + P
         KC  = KD + PM*M
         KCR = KC + P
         KW  = KC + PM*N
         LWR = LDWORK - KW + 1
         CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KC), PM )
         CALL DLASET( 'Full', P, M, ZERO, ZERO, DWORK(KD), PM )
C
         IF( STABD ) THEN
C
C           Compute a RCF with prescribed stability degree.
C
C           Workspace needed:      (N+M)*(M+P);
C           Additional workspace:  need   MAX( N*(N+5), 5*M, 4*P );
C                                  prefer larger.
C
            CALL SB08FD( DICO, N, M, P, ALPHA, A, LDA, B, LDB,
     $                   DWORK(KC), PM, DWORK(KD), PM, NQ, NDR,
     $                   DWORK(KCR), PM, DWORK(KDR), PM, TOL2,
     $                   DWORK(KW), LWR, IWARN, INFO )
         ELSE
C
C           Compute a RCF with inner denominator.
C
C           Workspace needed:      (N+M)*(M+P);
C           Additional workspace:  need   MAX(N*(N+5),M*(M+2),4*M,4*P);
C                                  prefer larger.
C
            CALL SB08DD( DICO, N, M, P, A, LDA, B, LDB,
     $                   DWORK(KC), PM, DWORK(KD), PM, NQ, NDR,
     $                   DWORK(KCR), PM, DWORK(KDR), PM, TOL2,
     $                   DWORK(KW), LWR, IWARN, INFO )
         END IF
C
         IWARN = 10*IWARN
         IF( INFO.NE.0 )
     $      RETURN
C
         WRKOPT = INT( DWORK(KW) ) + KW - 1
C
         IF( NQ.EQ.0 ) THEN
            NR = 0
            DWORK(1) = WRKOPT
            RETURN
         END IF
C                                   ( Q )              ( Qr )
C        Perform model reduction on ( R ) to determine ( Rr ).
C
C        Workspace needed:      (N+M)*(M+P) + 2*N*N;
C        Additional workspace:  need   N*(MAX(N,M+P)+5) + N*(N+1)/2;
C                               prefer larger.
C
         KT  = KW
         KTI = KT  + NQ*NQ
         KW  = KTI + NQ*NQ
         CALL AB09AX( DICO, JOBMR, ORDSEL, NQ, M, PM, NR, A, LDA, B,
     $                LDB, DWORK(KC), PM, HSV, DWORK(KT), N, DWORK(KTI),
     $                N, TOL1, IWORK, DWORK(KW), LDWORK-KW+1, IWARNK,
     $                IERR )
C
         IWARN = IWARN + IWARNK
         IF( IERR.NE.0 ) THEN
            INFO = 4
            RETURN
         END IF
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C                                                   -1
C        Compute the reduced order system Gr = Qr*Rr  .
C
C        Workspace needed:      (N+M)*(M+P);
C        Additional workspace:  need 4*M.
C
         KW = KT
         CALL SB08HD( NR, M, P, A, LDA, B, LDB, DWORK(KC), PM,
     $                DWORK(KD), PM, DWORK(KCR), PM, DWORK(KDR), PM,
     $                IWORK, DWORK(KW), INFO )
C
C        Copy the reduced system matrix Cr to C.
C
         CALL DLACPY( 'Full', P, NR, DWORK(KC), PM, C, LDC )
      END IF
C
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of AB09FD ***
      END