File: AB09HY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (396 lines) | stat: -rw-r--r-- 13,384 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
      SUBROUTINE AB09HY( N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   SCALEC, SCALEO, S, LDS, R, LDR, IWORK,
     $                   DWORK, LDWORK, BWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the Cholesky factors Su and Ru of the controllability
C     Grammian P = Su*Su' and observability Grammian Q = Ru'*Ru,
C     respectively, satisfying
C
C            A*P  + P*A' +  scalec^2*B*B'   = 0,       (1)
C
C            A'*Q + Q*A  +  scaleo^2*Cw'*Cw = 0,       (2)
C
C     where
C            Cw = Hw - Bw'*X,
C            Hw = inv(Dw)*C,
C            Bw = (B*D' + P*C')*inv(Dw'),
C            D*D' = Dw*Dw' (Dw upper triangular),
C
C     and, with Aw = A - Bw*Hw, X is the stabilizing solution of the
C     Riccati equation
C
C            Aw'*X + X*Aw + Hw'*Hw + X*Bw*Bw'*X = 0.   (3)
C
C     The P-by-M matrix D must have full row rank. Matrix A must be
C     stable and in a real Schur form.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of state-space representation, i.e.,
C             the order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  M >= P >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             stable state dynamics matrix A in a real Schur canonical
C             form.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             input/state matrix B, corresponding to the Schur matrix A.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading P-by-N part of this array must contain the
C             state/output matrix C, corresponding to the Schur
C             matrix A.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading P-by-M part of this array must
C             contain the full row rank input/output matrix D.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     SCALEC  (output) DOUBLE PRECISION
C             Scaling factor for the controllability Grammian in (1).
C
C     SCALEO  (output) DOUBLE PRECISION
C             Scaling factor for the observability Grammian in (2).
C
C     S       (output) DOUBLE PRECISION array, dimension (LDS,N)
C             The leading N-by-N upper triangular part of this array
C             contains the Cholesky factor Su of the cotrollability
C             Grammian P = Su*Su' satisfying (1).
C
C     LDS     INTEGER
C             The leading dimension of array S.  LDS >= MAX(1,N).
C
C     R       (output) DOUBLE PRECISION array, dimension (LDR,N)
C             The leading N-by-N upper triangular part of this array
C             contains the Cholesky factor Ru of the observability
C             Grammian Q = Ru'*Ru satisfying (2).
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,N).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension 2*N
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK and DWORK(2) contains RCOND, the reciprocal
C             condition number of the U11 matrix from the expression
C             used to compute X = U21*inv(U11). A small value RCOND
C             indicates possible ill-conditioning of the Riccati
C             equation (3).
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX( 2, N*(MAX(N,M,P)+5),
C                            2*N*P+MAX(P*(M+2),10*N*(N+1) ) ).
C             For optimum performance LDWORK should be larger.
C
C     BWORK   LOGICAL array, dimension 2*N
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the state matrix A is not stable or is not in a
C                   real Schur form;
C             = 2:  the reduction of Hamiltonian matrix to real Schur
C                   form failed;
C             = 3:  the reordering of the real Schur form of the
C                   Hamiltonian matrix failed;
C             = 4:  the Hamiltonian matrix has less than N stable
C                   eigenvalues;
C             = 5:  the coefficient matrix U11 in the linear system
C                   X*U11 = U21, used to determine X, is singular to
C                   working precision;
C             = 6:  the feedthrough matrix D has not a full row rank P.
C
C     CONTRIBUTORS
C
C     A. Varga, German Aerospace Center, Oberpfaffenhofen, May 2000.
C     D. Sima, University of Bucharest, May 2000.
C     V. Sima, Research Institute for Informatics, Bucharest, May 2000.
C     Based on the RASP routines SRGRO and SRGRO1, by A. Varga, 1992.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Oct. 2001.
C
C     KEYWORDS
C
C     Minimal realization, model reduction, multivariable system,
C     state-space model, state-space representation,
C     stochastic balancing.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION ZERO, ONE, TWO
      PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C     .. Scalar Arguments ..
      INTEGER          INFO, LDA, LDB, LDC, LDD, LDR, LDS, LDWORK, M, N,
     $                 P
      DOUBLE PRECISION SCALEC, SCALEO
C     .. Array Arguments ..
      INTEGER          IWORK(*)
      DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                 DWORK(*), R(LDR,*), S(LDS,*)
      LOGICAL          BWORK(*)
C     .. Local Scalars ..
      INTEGER          I, IERR, KBW, KCW, KD, KDW, KG, KQ, KS, KTAU, KU,
     $                 KW, KWI, KWR, LW, N2, WRKOPT
      DOUBLE PRECISION RCOND, RTOL
C     .. External Functions ..
      DOUBLE PRECISION DLANGE, DLAMCH
      EXTERNAL         DLANGE, DLAMCH
C     .. External Subroutines ..
      EXTERNAL         DGEMM, DGERQF, DLACPY, DORGRQ, DSYRK, DTRMM,
     $                 DTRSM, SB02MD, SB03OU, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC        ABS, DBLE, INT, MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
      LW   = MAX( 2, N*( MAX( N, M, P ) + 5 ),
     $            2*N*P + MAX( P*(M + 2), 10*N*(N + 1) ) )
C
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 .OR. P.GT.M ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -9
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -11
      ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
         INFO = -15
      ELSE IF( LDR.LT.MAX( 1, N ) ) THEN
         INFO = -17
      ELSE IF( LDWORK.LT.LW ) THEN
         INFO = -20
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB09HY', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      SCALEC = ONE
      SCALEO = ONE
      IF( MIN( N, M, P ).EQ.0 ) THEN
         DWORK(1) = TWO
         DWORK(2) = ONE
         RETURN
      END IF
C
C     Solve for Su the Lyapunov equation
C                                      2
C     A*(Su*Su') + (Su*Su')*A' + scalec *B*B' = 0 .
C
C     Workspace:  need   N*(MAX(N,M) + 5);
C                 prefer larger.
C
      KU   = 1
      KTAU = KU + N*MAX( N, M )
      KW   = KTAU + N
C
      CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), N )
      CALL SB03OU( .FALSE., .TRUE., N, M, A, LDA, DWORK(KU), N,
     $             DWORK(KTAU), S, LDS, SCALEC, DWORK(KW),
     $             LDWORK - KW + 1, IERR )
      IF( IERR.NE.0 ) THEN
         INFO = 1
         RETURN
      ENDIF
      WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C     Allocate workspace for Bw' (P*N), Cw (P*N), Q2 (P*M),
C     where Q2 = inv(Dw)*D.
C     Workspace:  need   2*N*P + P*M.
C
      KBW  = 1
      KCW  = KBW  + P*N
      KD   = KCW  + P*N
      KDW  = KD   + P*(M - P)
      KTAU = KD   + P*M
      KW   = KTAU + P
C
C     Compute an upper-triangular Dw such that D*D' = Dw*Dw', using
C     the RQ-decomposition of D: D = [0 Dw]*( Q1 ).
C                                           ( Q2 )
C     Additional workspace:  need 2*P; prefer P + P*NB.
C
      CALL DLACPY( 'F', P, M, D, LDD, DWORK(KD), P )
      CALL DGERQF( P, M, DWORK(KD), P, DWORK(KTAU), DWORK(KW),
     $             LDWORK-KW+1, IERR )
      WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C     Check the full row rank of D.
C
      RTOL = DBLE( M ) * DLAMCH( 'E' ) *
     $       DLANGE( '1', P, M, D, LDD, DWORK )
      DO 10 I = KDW, KDW+P*P-1, P+1
         IF( ABS( DWORK(I) ).LE.RTOL ) THEN
            INFO = 6
            RETURN
         END IF
   10 CONTINUE
C                    -1
C     Compute Hw = Dw  *C.
C
      CALL DLACPY( 'F', P, N, C, LDC, DWORK(KCW), P )
      CALL DTRSM( 'Left', 'Upper', 'No-transpose', 'Non-unit', P, N,
     $            ONE, DWORK(KDW), P, DWORK(KCW), P )
C
C     Compute Bw' = inv(Dw)*(D*B' + C*Su*Su').
C
C     Compute first Hw*Su*Su' in Bw'.
C
      CALL DLACPY( 'F', P, N, DWORK(KCW), P, DWORK(KBW), P )
      CALL DTRMM( 'Right', 'Upper', 'No-transpose', 'Non-unit', P, N,
     $            ONE, S, LDS, DWORK(KBW), P )
      CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Non-unit', P, N,
     $            ONE, S, LDS, DWORK(KBW), P )
C
C     Compute Q2 = inv(Dw)*D, as the last P lines of the orthogonal
C     matrix ( Q1 ) from the RQ decomposition of D.
C            ( Q2 )
C     Additional workspace:  need P; prefer P*NB.
C
      CALL DORGRQ( P, M, P, DWORK(KD), P, DWORK(KTAU), DWORK(KW),
     $             LDWORK-KW+1, IERR )
      WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C     Compute Bw' <- Bw' + Q2*B'.
C
      CALL DGEMM( 'No-transpose', 'Transpose', P, N, M, ONE,
     $            DWORK(KD), P, B, LDB, ONE, DWORK(KBW), P )
C
C     Compute Aw = A - Bw*Hw in R.
C
      CALL DLACPY( 'F', N, N, A, LDA, R, LDR )
      CALL DGEMM( 'Transpose', 'No-transpose', N, N, P, -ONE,
     $            DWORK(KBW), P, DWORK(KCW), P, ONE, R, LDR )
C
C     Allocate storage to solve the Riccati equation (3) for
C     G(N*N), Q(N*N), WR(2N), WI(2N), S(2N*2N), U(2N*2N).
C
      N2  = N + N
      KG  = KD
      KQ  = KG  + N*N
      KWR = KQ  + N*N
      KWI = KWR + N2
      KS  = KWI + N2
      KU  = KS  + N2*N2
      KW  = KU  + N2*N2
C
C     Compute G = -Bw*Bw'.
C
      CALL DSYRK( 'Upper', 'Transpose', N, P, -ONE, DWORK(KBW), P, ZERO,
     $            DWORK(KG), N )
C
C     Compute Q = Hw'*Hw.
C
      CALL DSYRK( 'Upper', 'Transpose', N, P, ONE, DWORK(KCW), P, ZERO,
     $            DWORK(KQ), N )
C
C     Solve
C
C        Aw'*X + X*Aw + Q - X*G*X = 0,
C
C     with Q =  Hw'*Hw  and  G = -Bw*Bw'.
C     Additional workspace: need   6*N;
C                           prefer larger.
C
      CALL SB02MD( 'Continuous', 'None', 'Upper', 'General', 'Stable',
     $             N, R, LDR, DWORK(KG), N, DWORK(KQ), N, RCOND,
     $             DWORK(KWR), DWORK(KWI), DWORK(KS), N2,
     $             DWORK(KU), N2, IWORK, DWORK(KW), LDWORK-KW+1,
     $             BWORK, INFO )
      IF( INFO.NE.0 )
     $   RETURN
      WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C     Compute Cw = Hw - Bw'*X.
C
      CALL DGEMM ( 'No-transpose', 'No-transpose', P, N, N, -ONE,
     $              DWORK(KBW), P, DWORK(KQ), N, ONE, DWORK(KCW), P )
C
C     Solve for Ru the Lyapunov equation
C                                      2
C     A'*(Ru'*Ru) + (Ru'*Ru)*A + scaleo  * Cw'*Cw = 0 .
C
C     Workspace:  need   N*(MAX(N,P) + 5);
C                 prefer larger.
C
      KTAU = KCW  + N*MAX( N, P )
      KW   = KTAU + N
C
      CALL SB03OU( .FALSE., .FALSE., N, P, A, LDA, DWORK(KCW), P,
     $             DWORK(KTAU), R, LDR, SCALEO, DWORK(KW),
     $             LDWORK - KW + 1, IERR )
      WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C     Save optimal workspace and RCOND.
C
      DWORK(1) = WRKOPT
      DWORK(2) = RCOND
C
      RETURN
C *** Last line of AB09HY ***
      END