1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
SUBROUTINE AB09HY( N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
$ SCALEC, SCALEO, S, LDS, R, LDR, IWORK,
$ DWORK, LDWORK, BWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the Cholesky factors Su and Ru of the controllability
C Grammian P = Su*Su' and observability Grammian Q = Ru'*Ru,
C respectively, satisfying
C
C A*P + P*A' + scalec^2*B*B' = 0, (1)
C
C A'*Q + Q*A + scaleo^2*Cw'*Cw = 0, (2)
C
C where
C Cw = Hw - Bw'*X,
C Hw = inv(Dw)*C,
C Bw = (B*D' + P*C')*inv(Dw'),
C D*D' = Dw*Dw' (Dw upper triangular),
C
C and, with Aw = A - Bw*Hw, X is the stabilizing solution of the
C Riccati equation
C
C Aw'*X + X*Aw + Hw'*Hw + X*Bw*Bw'*X = 0. (3)
C
C The P-by-M matrix D must have full row rank. Matrix A must be
C stable and in a real Schur form.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of state-space representation, i.e.,
C the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. M >= P >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C stable state dynamics matrix A in a real Schur canonical
C form.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C input/state matrix B, corresponding to the Schur matrix A.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array must contain the
C state/output matrix C, corresponding to the Schur
C matrix A.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading P-by-M part of this array must
C contain the full row rank input/output matrix D.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C SCALEC (output) DOUBLE PRECISION
C Scaling factor for the controllability Grammian in (1).
C
C SCALEO (output) DOUBLE PRECISION
C Scaling factor for the observability Grammian in (2).
C
C S (output) DOUBLE PRECISION array, dimension (LDS,N)
C The leading N-by-N upper triangular part of this array
C contains the Cholesky factor Su of the cotrollability
C Grammian P = Su*Su' satisfying (1).
C
C LDS INTEGER
C The leading dimension of array S. LDS >= MAX(1,N).
C
C R (output) DOUBLE PRECISION array, dimension (LDR,N)
C The leading N-by-N upper triangular part of this array
C contains the Cholesky factor Ru of the observability
C Grammian Q = Ru'*Ru satisfying (2).
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,N).
C
C Workspace
C
C IWORK INTEGER array, dimension 2*N
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK and DWORK(2) contains RCOND, the reciprocal
C condition number of the U11 matrix from the expression
C used to compute X = U21*inv(U11). A small value RCOND
C indicates possible ill-conditioning of the Riccati
C equation (3).
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( 2, N*(MAX(N,M,P)+5),
C 2*N*P+MAX(P*(M+2),10*N*(N+1) ) ).
C For optimum performance LDWORK should be larger.
C
C BWORK LOGICAL array, dimension 2*N
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the state matrix A is not stable or is not in a
C real Schur form;
C = 2: the reduction of Hamiltonian matrix to real Schur
C form failed;
C = 3: the reordering of the real Schur form of the
C Hamiltonian matrix failed;
C = 4: the Hamiltonian matrix has less than N stable
C eigenvalues;
C = 5: the coefficient matrix U11 in the linear system
C X*U11 = U21, used to determine X, is singular to
C working precision;
C = 6: the feedthrough matrix D has not a full row rank P.
C
C CONTRIBUTORS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, May 2000.
C D. Sima, University of Bucharest, May 2000.
C V. Sima, Research Institute for Informatics, Bucharest, May 2000.
C Based on the RASP routines SRGRO and SRGRO1, by A. Varga, 1992.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 2001.
C
C KEYWORDS
C
C Minimal realization, model reduction, multivariable system,
C state-space model, state-space representation,
C stochastic balancing.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDD, LDR, LDS, LDWORK, M, N,
$ P
DOUBLE PRECISION SCALEC, SCALEO
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), R(LDR,*), S(LDS,*)
LOGICAL BWORK(*)
C .. Local Scalars ..
INTEGER I, IERR, KBW, KCW, KD, KDW, KG, KQ, KS, KTAU, KU,
$ KW, KWI, KWR, LW, N2, WRKOPT
DOUBLE PRECISION RCOND, RTOL
C .. External Functions ..
DOUBLE PRECISION DLANGE, DLAMCH
EXTERNAL DLANGE, DLAMCH
C .. External Subroutines ..
EXTERNAL DGEMM, DGERQF, DLACPY, DORGRQ, DSYRK, DTRMM,
$ DTRSM, SB02MD, SB03OU, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
LW = MAX( 2, N*( MAX( N, M, P ) + 5 ),
$ 2*N*P + MAX( P*(M + 2), 10*N*(N + 1) ) )
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 .OR. P.GT.M ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -9
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -11
ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
INFO = -15
ELSE IF( LDR.LT.MAX( 1, N ) ) THEN
INFO = -17
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -20
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09HY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
SCALEC = ONE
SCALEO = ONE
IF( MIN( N, M, P ).EQ.0 ) THEN
DWORK(1) = TWO
DWORK(2) = ONE
RETURN
END IF
C
C Solve for Su the Lyapunov equation
C 2
C A*(Su*Su') + (Su*Su')*A' + scalec *B*B' = 0 .
C
C Workspace: need N*(MAX(N,M) + 5);
C prefer larger.
C
KU = 1
KTAU = KU + N*MAX( N, M )
KW = KTAU + N
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), N )
CALL SB03OU( .FALSE., .TRUE., N, M, A, LDA, DWORK(KU), N,
$ DWORK(KTAU), S, LDS, SCALEC, DWORK(KW),
$ LDWORK - KW + 1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 1
RETURN
ENDIF
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C Allocate workspace for Bw' (P*N), Cw (P*N), Q2 (P*M),
C where Q2 = inv(Dw)*D.
C Workspace: need 2*N*P + P*M.
C
KBW = 1
KCW = KBW + P*N
KD = KCW + P*N
KDW = KD + P*(M - P)
KTAU = KD + P*M
KW = KTAU + P
C
C Compute an upper-triangular Dw such that D*D' = Dw*Dw', using
C the RQ-decomposition of D: D = [0 Dw]*( Q1 ).
C ( Q2 )
C Additional workspace: need 2*P; prefer P + P*NB.
C
CALL DLACPY( 'F', P, M, D, LDD, DWORK(KD), P )
CALL DGERQF( P, M, DWORK(KD), P, DWORK(KTAU), DWORK(KW),
$ LDWORK-KW+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Check the full row rank of D.
C
RTOL = DBLE( M ) * DLAMCH( 'E' ) *
$ DLANGE( '1', P, M, D, LDD, DWORK )
DO 10 I = KDW, KDW+P*P-1, P+1
IF( ABS( DWORK(I) ).LE.RTOL ) THEN
INFO = 6
RETURN
END IF
10 CONTINUE
C -1
C Compute Hw = Dw *C.
C
CALL DLACPY( 'F', P, N, C, LDC, DWORK(KCW), P )
CALL DTRSM( 'Left', 'Upper', 'No-transpose', 'Non-unit', P, N,
$ ONE, DWORK(KDW), P, DWORK(KCW), P )
C
C Compute Bw' = inv(Dw)*(D*B' + C*Su*Su').
C
C Compute first Hw*Su*Su' in Bw'.
C
CALL DLACPY( 'F', P, N, DWORK(KCW), P, DWORK(KBW), P )
CALL DTRMM( 'Right', 'Upper', 'No-transpose', 'Non-unit', P, N,
$ ONE, S, LDS, DWORK(KBW), P )
CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Non-unit', P, N,
$ ONE, S, LDS, DWORK(KBW), P )
C
C Compute Q2 = inv(Dw)*D, as the last P lines of the orthogonal
C matrix ( Q1 ) from the RQ decomposition of D.
C ( Q2 )
C Additional workspace: need P; prefer P*NB.
C
CALL DORGRQ( P, M, P, DWORK(KD), P, DWORK(KTAU), DWORK(KW),
$ LDWORK-KW+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Compute Bw' <- Bw' + Q2*B'.
C
CALL DGEMM( 'No-transpose', 'Transpose', P, N, M, ONE,
$ DWORK(KD), P, B, LDB, ONE, DWORK(KBW), P )
C
C Compute Aw = A - Bw*Hw in R.
C
CALL DLACPY( 'F', N, N, A, LDA, R, LDR )
CALL DGEMM( 'Transpose', 'No-transpose', N, N, P, -ONE,
$ DWORK(KBW), P, DWORK(KCW), P, ONE, R, LDR )
C
C Allocate storage to solve the Riccati equation (3) for
C G(N*N), Q(N*N), WR(2N), WI(2N), S(2N*2N), U(2N*2N).
C
N2 = N + N
KG = KD
KQ = KG + N*N
KWR = KQ + N*N
KWI = KWR + N2
KS = KWI + N2
KU = KS + N2*N2
KW = KU + N2*N2
C
C Compute G = -Bw*Bw'.
C
CALL DSYRK( 'Upper', 'Transpose', N, P, -ONE, DWORK(KBW), P, ZERO,
$ DWORK(KG), N )
C
C Compute Q = Hw'*Hw.
C
CALL DSYRK( 'Upper', 'Transpose', N, P, ONE, DWORK(KCW), P, ZERO,
$ DWORK(KQ), N )
C
C Solve
C
C Aw'*X + X*Aw + Q - X*G*X = 0,
C
C with Q = Hw'*Hw and G = -Bw*Bw'.
C Additional workspace: need 6*N;
C prefer larger.
C
CALL SB02MD( 'Continuous', 'None', 'Upper', 'General', 'Stable',
$ N, R, LDR, DWORK(KG), N, DWORK(KQ), N, RCOND,
$ DWORK(KWR), DWORK(KWI), DWORK(KS), N2,
$ DWORK(KU), N2, IWORK, DWORK(KW), LDWORK-KW+1,
$ BWORK, INFO )
IF( INFO.NE.0 )
$ RETURN
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Compute Cw = Hw - Bw'*X.
C
CALL DGEMM ( 'No-transpose', 'No-transpose', P, N, N, -ONE,
$ DWORK(KBW), P, DWORK(KQ), N, ONE, DWORK(KCW), P )
C
C Solve for Ru the Lyapunov equation
C 2
C A'*(Ru'*Ru) + (Ru'*Ru)*A + scaleo * Cw'*Cw = 0 .
C
C Workspace: need N*(MAX(N,P) + 5);
C prefer larger.
C
KTAU = KCW + N*MAX( N, P )
KW = KTAU + N
C
CALL SB03OU( .FALSE., .FALSE., N, P, A, LDA, DWORK(KCW), P,
$ DWORK(KTAU), R, LDR, SCALEO, DWORK(KW),
$ LDWORK - KW + 1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Save optimal workspace and RCOND.
C
DWORK(1) = WRKOPT
DWORK(2) = RCOND
C
RETURN
C *** Last line of AB09HY ***
END
|