1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
|
SUBROUTINE AB09ID( DICO, JOBC, JOBO, JOB, WEIGHT, EQUIL, ORDSEL,
$ N, M, P, NV, PV, NW, MW, NR, ALPHA, ALPHAC,
$ ALPHAO, A, LDA, B, LDB, C, LDC, D, LDD,
$ AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
$ AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
$ NS, HSV, TOL1, TOL2, IWORK, DWORK, LDWORK,
$ IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr,Dr) for an original
C state-space representation (A,B,C,D) by using the frequency
C weighted square-root or balancing-free square-root
C Balance & Truncate (B&T) or Singular Perturbation Approximation
C (SPA) model reduction methods. The algorithm tries to minimize
C the norm of the frequency-weighted error
C
C ||V*(G-Gr)*W||
C
C where G and Gr are the transfer-function matrices of the original
C and reduced order models, respectively, and V and W are
C frequency-weighting transfer-function matrices. V and W must not
C have poles on the imaginary axis for a continuous-time
C system or on the unit circle for a discrete-time system.
C If G is unstable, only the ALPHA-stable part of G is reduced.
C In case of possible pole-zero cancellations in V*G and/or G*W,
C the absolute values of parameters ALPHAO and/or ALPHAC must be
C different from 1.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOBC CHARACTER*1
C Specifies the choice of frequency-weighted controllability
C Grammian as follows:
C = 'S': choice corresponding to a combination method [4]
C of the approaches of Enns [1] and Lin-Chiu [2,3];
C = 'E': choice corresponding to the stability enhanced
C modified combination method of [4].
C
C JOBO CHARACTER*1
C Specifies the choice of frequency-weighted observability
C Grammian as follows:
C = 'S': choice corresponding to a combination method [4]
C of the approaches of Enns [1] and Lin-Chiu [2,3];
C = 'E': choice corresponding to the stability enhanced
C modified combination method of [4].
C
C JOB CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root Balance & Truncate method;
C = 'F': use the balancing-free square-root
C Balance & Truncate method;
C = 'S': use the square-root Singular Perturbation
C Approximation method;
C = 'P': use the balancing-free square-root
C Singular Perturbation Approximation method.
C
C WEIGHT CHARACTER*1
C Specifies the type of frequency weighting, as follows:
C = 'N': no weightings are used (V = I, W = I);
C = 'L': only left weighting V is used (W = I);
C = 'R': only right weighting W is used (V = I);
C = 'B': both left and right weightings V and W are used.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to preliminarily
C equilibrate the triplet (A,B,C) as follows:
C = 'S': perform equilibration (scaling);
C = 'N': do not perform equilibration.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL1.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation,
C i.e., the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NV (input) INTEGER
C The order of the matrix AV. Also the number of rows of
C the matrix BV and the number of columns of the matrix CV.
C NV represents the dimension of the state vector of the
C system with the transfer-function matrix V. NV >= 0.
C
C PV (input) INTEGER
C The number of rows of the matrices CV and DV. PV >= 0.
C PV represents the dimension of the output vector of the
C system with the transfer-function matrix V.
C
C NW (input) INTEGER
C The order of the matrix AW. Also the number of rows of
C the matrix BW and the number of columns of the matrix CW.
C NW represents the dimension of the state vector of the
C system with the transfer-function matrix W. NW >= 0.
C
C MW (input) INTEGER
C The number of columns of the matrices BW and DW. MW >= 0.
C MW represents the dimension of the input vector of the
C system with the transfer-function matrix W.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of the
C resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. For a system with NU ALPHA-unstable
C eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
C NR is set as follows: if ORDSEL = 'F', NR is equal to
C NU+MIN(MAX(0,NR-NU),NMIN), where NR is the desired order
C on entry, NMIN is the number of frequency-weighted Hankel
C singular values greater than NS*EPS*S1, EPS is the
C machine precision (see LAPACK Library Routine DLAMCH)
C and S1 is the largest Hankel singular value (computed
C in HSV(1)); NR can be further reduced to ensure
C HSV(NR-NU) > HSV(NR+1-NU);
C if ORDSEL = 'A', NR is the sum of NU and the number of
C Hankel singular values greater than MAX(TOL1,NS*EPS*S1).
C
C ALPHA (input) DOUBLE PRECISION
C Specifies the ALPHA-stability boundary for the eigenvalues
C of the state dynamics matrix A. For a continuous-time
C system (DICO = 'C'), ALPHA <= 0 is the boundary value for
C the real parts of eigenvalues, while for a discrete-time
C system (DICO = 'D'), 0 <= ALPHA <= 1 represents the
C boundary value for the moduli of eigenvalues.
C The ALPHA-stability domain does not include the boundary.
C
C ALPHAC (input) DOUBLE PRECISION
C Combination method parameter for defining the
C frequency-weighted controllability Grammian (see METHOD);
C ABS(ALPHAC) <= 1.
C
C ALPHAO (input) DOUBLE PRECISION
C Combination method parameter for defining the
C frequency-weighted observability Grammian (see METHOD);
C ABS(ALPHAO) <= 1.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the
C reduced order system.
C The resulting A has a block-diagonal form with two blocks.
C For a system with NU ALPHA-unstable eigenvalues and
C NS ALPHA-stable eigenvalues (NU+NS = N), the leading
C NU-by-NU block contains the unreduced part of A
C corresponding to ALPHA-unstable eigenvalues.
C The trailing (NR+NS-N)-by-(NR+NS-N) block contains
C the reduced part of A corresponding to ALPHA-stable
C eigenvalues.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the original input/output matrix D.
C On exit, if INFO = 0, the leading P-by-M part of this
C array contains the input/output matrix Dr of the reduced
C order system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C AV (input/output) DOUBLE PRECISION array, dimension (LDAV,NV)
C On entry, if WEIGHT = 'L' or 'B', the leading NV-by-NV
C part of this array must contain the state matrix AV of
C the system with the transfer-function matrix V.
C On exit, if WEIGHT = 'L' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading NVR-by-NVR part of this array
C contains the state matrix of a minimal realization of V
C in a real Schur form. NVR is returned in IWORK(2).
C AV is not referenced if WEIGHT = 'R' or 'N',
C or MIN(N,M,P) = 0.
C
C LDAV INTEGER
C The leading dimension of array AV.
C LDAV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C LDAV >= 1, if WEIGHT = 'R' or 'N'.
C
C BV (input/output) DOUBLE PRECISION array, dimension (LDBV,P)
C On entry, if WEIGHT = 'L' or 'B', the leading NV-by-P part
C of this array must contain the input matrix BV of the
C system with the transfer-function matrix V.
C On exit, if WEIGHT = 'L' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading NVR-by-P part of this array contains
C the input matrix of a minimal realization of V.
C BV is not referenced if WEIGHT = 'R' or 'N',
C or MIN(N,M,P) = 0.
C
C LDBV INTEGER
C The leading dimension of array BV.
C LDBV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C LDBV >= 1, if WEIGHT = 'R' or 'N'.
C
C CV (input/output) DOUBLE PRECISION array, dimension (LDCV,NV)
C On entry, if WEIGHT = 'L' or 'B', the leading PV-by-NV
C part of this array must contain the output matrix CV of
C the system with the transfer-function matrix V.
C On exit, if WEIGHT = 'L' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading PV-by-NVR part of this array
C contains the output matrix of a minimal realization of V.
C CV is not referenced if WEIGHT = 'R' or 'N',
C or MIN(N,M,P) = 0.
C
C LDCV INTEGER
C The leading dimension of array CV.
C LDCV >= MAX(1,PV), if WEIGHT = 'L' or 'B';
C LDCV >= 1, if WEIGHT = 'R' or 'N'.
C
C DV (input) DOUBLE PRECISION array, dimension (LDDV,P)
C If WEIGHT = 'L' or 'B', the leading PV-by-P part of this
C array must contain the feedthrough matrix DV of the system
C with the transfer-function matrix V.
C DV is not referenced if WEIGHT = 'R' or 'N',
C or MIN(N,M,P) = 0.
C
C LDDV INTEGER
C The leading dimension of array DV.
C LDDV >= MAX(1,PV), if WEIGHT = 'L' or 'B';
C LDDV >= 1, if WEIGHT = 'R' or 'N'.
C
C AW (input/output) DOUBLE PRECISION array, dimension (LDAW,NW)
C On entry, if WEIGHT = 'R' or 'B', the leading NW-by-NW
C part of this array must contain the state matrix AW of
C the system with the transfer-function matrix W.
C On exit, if WEIGHT = 'R' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading NWR-by-NWR part of this array
C contains the state matrix of a minimal realization of W
C in a real Schur form. NWR is returned in IWORK(3).
C AW is not referenced if WEIGHT = 'L' or 'N',
C or MIN(N,M,P) = 0.
C
C LDAW INTEGER
C The leading dimension of array AW.
C LDAW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C LDAW >= 1, if WEIGHT = 'L' or 'N'.
C
C BW (input/output) DOUBLE PRECISION array, dimension (LDBW,MW)
C On entry, if WEIGHT = 'R' or 'B', the leading NW-by-MW
C part of this array must contain the input matrix BW of the
C system with the transfer-function matrix W.
C On exit, if WEIGHT = 'R' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading NWR-by-MW part of this array
C contains the input matrix of a minimal realization of W.
C BW is not referenced if WEIGHT = 'L' or 'N',
C or MIN(N,M,P) = 0.
C
C LDBW INTEGER
C The leading dimension of array BW.
C LDBW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C LDBW >= 1, if WEIGHT = 'L' or 'N'.
C
C CW (input/output) DOUBLE PRECISION array, dimension (LDCW,NW)
C On entry, if WEIGHT = 'R' or 'B', the leading M-by-NW part
C of this array must contain the output matrix CW of the
C system with the transfer-function matrix W.
C On exit, if WEIGHT = 'R' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading M-by-NWR part of this array contains
C the output matrix of a minimal realization of W.
C CW is not referenced if WEIGHT = 'L' or 'N',
C or MIN(N,M,P) = 0.
C
C LDCW INTEGER
C The leading dimension of array CW.
C LDCW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C LDCW >= 1, if WEIGHT = 'L' or 'N'.
C
C DW (input) DOUBLE PRECISION array, dimension (LDDW,MW)
C If WEIGHT = 'R' or 'B', the leading M-by-MW part of this
C array must contain the feedthrough matrix DW of the system
C with the transfer-function matrix W.
C DW is not referenced if WEIGHT = 'L' or 'N',
C or MIN(N,M,P) = 0.
C
C LDDW INTEGER
C The leading dimension of array DW.
C LDDW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C LDDW >= 1, if WEIGHT = 'L' or 'N'.
C
C NS (output) INTEGER
C The dimension of the ALPHA-stable subsystem.
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, the leading NS elements of this array contain
C the frequency-weighted Hankel singular values, ordered
C decreasingly, of the ALPHA-stable part of the original
C system.
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If ORDSEL = 'A', TOL1 contains the tolerance for
C determining the order of reduced system.
C For model reduction, the recommended value is
C TOL1 = c*S1, where c is a constant in the
C interval [0.00001,0.001], and S1 is the largest
C frequency-weighted Hankel singular value of the
C ALPHA-stable part of the original system (computed
C in HSV(1)).
C If TOL1 <= 0 on entry, the used default value is
C TOL1 = NS*EPS*S1, where NS is the number of
C ALPHA-stable eigenvalues of A and EPS is the machine
C precision (see LAPACK Library Routine DLAMCH).
C If ORDSEL = 'F', the value of TOL1 is ignored.
C
C TOL2 DOUBLE PRECISION
C The tolerance for determining the order of a minimal
C realization of the ALPHA-stable part of the given system.
C The recommended value is TOL2 = NS*EPS*S1.
C This value is used by default if TOL2 <= 0 on entry.
C If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
C
C Workspace
C
C IWORK INTEGER array, dimension
C ( MAX( 3, LIWRK1, LIWRK2, LIWRK3 ) ), where
C LIWRK1 = 0, if JOB = 'B';
C LIWRK1 = N, if JOB = 'F';
C LIWRK1 = 2*N, if JOB = 'S' or 'P';
C LIWRK2 = 0, if WEIGHT = 'R' or 'N' or NV = 0;
C LIWRK2 = NV+MAX(P,PV), if WEIGHT = 'L' or 'B' and NV > 0;
C LIWRK3 = 0, if WEIGHT = 'L' or 'N' or NW = 0;
C LIWRK3 = NW+MAX(M,MW), if WEIGHT = 'R' or 'B' and NW > 0.
C On exit, if INFO = 0, IWORK(1) contains the order of a
C minimal realization of the stable part of the system,
C IWORK(2) and IWORK(3) contain the actual orders
C of the state space realizations of V and W, respectively.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( LMINL, LMINR, LRCF,
C 2*N*N + MAX( 1, LLEFT, LRIGHT, 2*N*N+5*N,
C N*MAX(M,P) ) ),
C where
C LMINL = 0, if WEIGHT = 'R' or 'N' or NV = 0; otherwise,
C LMINL = MAX(LLCF,NV+MAX(NV,3*P)) if P = PV;
C LMINL = MAX(P,PV)*(2*NV+MAX(P,PV))+
C MAX(LLCF,NV+MAX(NV,3*P,3*PV)) if P <> PV;
C LRCF = 0, and
C LMINR = 0, if WEIGHT = 'L' or 'N' or NW = 0; otherwise,
C LMINR = NW+MAX(NW,3*M) if M = MW;
C LMINR = 2*NW*MAX(M,MW)+NW+MAX(NW,3*M,3*MW) if M <> MW;
C LLCF = PV*(NV+PV)+PV*NV+MAX(NV*(NV+5), PV*(PV+2),
C 4*PV, 4*P);
C LRCF = MW*(NW+MW)+MAX(NW*(NW+5),MW*(MW+2),4*MW,4*M)
C LLEFT = (N+NV)*(N+NV+MAX(N+NV,PV)+5)
C if WEIGHT = 'L' or 'B' and PV > 0;
C LLEFT = N*(P+5) if WEIGHT = 'R' or 'N' or PV = 0;
C LRIGHT = (N+NW)*(N+NW+MAX(N+NW,MW)+5)
C if WEIGHT = 'R' or 'B' and MW > 0;
C LRIGHT = N*(M+5) if WEIGHT = 'L' or 'N' or MW = 0.
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than NSMIN, the sum of the order of the
C ALPHA-unstable part and the order of a minimal
C realization of the ALPHA-stable part of the given
C system; in this case, the resulting NR is set equal
C to NSMIN;
C = 2: with ORDSEL = 'F', the selected order NR corresponds
C to repeated singular values for the ALPHA-stable
C part, which are neither all included nor all
C excluded from the reduced model; in this case, the
C resulting NR is automatically decreased to exclude
C all repeated singular values;
C = 3: with ORDSEL = 'F', the selected order NR is less
C than the order of the ALPHA-unstable part of the
C given system; in this case NR is set equal to the
C order of the ALPHA-unstable part.
C = 10+K: K violations of the numerical stability condition
C occured during the assignment of eigenvalues in the
C SLICOT Library routines SB08CD and/or SB08DD.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the computation of the ordered real Schur form of A
C failed;
C = 2: the separation of the ALPHA-stable/unstable
C diagonal blocks failed because of very close
C eigenvalues;
C = 3: the reduction to a real Schur form of the state
C matrix of a minimal realization of V failed;
C = 4: a failure was detected during the ordering of the
C real Schur form of the state matrix of a minimal
C realization of V or in the iterative process to
C compute a left coprime factorization with inner
C denominator;
C = 5: if DICO = 'C' and the matrix AV has an observable
C eigenvalue on the imaginary axis, or DICO = 'D' and
C AV has an observable eigenvalue on the unit circle;
C = 6: the reduction to a real Schur form of the state
C matrix of a minimal realization of W failed;
C = 7: a failure was detected during the ordering of the
C real Schur form of the state matrix of a minimal
C realization of W or in the iterative process to
C compute a right coprime factorization with inner
C denominator;
C = 8: if DICO = 'C' and the matrix AW has a controllable
C eigenvalue on the imaginary axis, or DICO = 'D' and
C AW has a controllable eigenvalue on the unit circle;
C = 9: the computation of eigenvalues failed;
C = 10: the computation of Hankel singular values failed.
C
C METHOD
C
C Let G be the transfer-function matrix of the original
C linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) + Du(t), (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09ID determines
C the matrices of a reduced order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) + Dr*u(t), (2)
C
C such that the corresponding transfer-function matrix Gr minimizes
C the norm of the frequency-weighted error
C
C V*(G-Gr)*W, (3)
C
C where V and W are transfer-function matrices without poles on the
C imaginary axis in continuous-time case or on the unit circle in
C discrete-time case.
C
C The following procedure is used to reduce G:
C
C 1) Decompose additively G, of order N, as
C
C G = G1 + G2,
C
C such that G1 = (A1,B1,C1,D) has only ALPHA-stable poles and
C G2 = (A2,B2,C2,0), of order NU, has only ALPHA-unstable poles.
C
C 2) Compute for G1 a B&T or SPA frequency-weighted approximation
C G1r of order NR-NU using the combination method or the
C modified combination method of [4].
C
C 3) Assemble the reduced model Gr as
C
C Gr = G1r + G2.
C
C For the frequency-weighted reduction of the ALPHA-stable part,
C several methods described in [4] can be employed in conjunction
C with the combination method and modified combination method
C proposed in [4].
C
C If JOB = 'B', the square-root B&T method is used.
C If JOB = 'F', the balancing-free square-root version of the
C B&T method is used.
C If JOB = 'S', the square-root version of the SPA method is used.
C If JOB = 'P', the balancing-free square-root version of the
C SPA method is used.
C
C For each of these methods, left and right truncation matrices
C are determined using the Cholesky factors of an input
C frequency-weighted controllability Grammian P and an output
C frequency-weighted observability Grammian Q.
C P and Q are computed from the controllability Grammian Pi of G*W
C and the observability Grammian Qo of V*G. Using special
C realizations of G*W and V*G, Pi and Qo are computed in the
C partitioned forms
C
C Pi = ( P11 P12 ) and Qo = ( Q11 Q12 ) ,
C ( P12' P22 ) ( Q12' Q22 )
C
C where P11 and Q11 are the leading N-by-N parts of Pi and Qo,
C respectively. Let P0 and Q0 be non-negative definite matrices
C defined below
C -1
C P0 = P11 - ALPHAC**2*P12*P22 *P21 ,
C -1
C Q0 = Q11 - ALPHAO**2*Q12*Q22 *Q21.
C
C The frequency-weighted controllability and observability
C Grammians, P and Q, respectively, are defined as follows:
C P = P0 if JOBC = 'S' (standard combination method [4]);
C P = P1 >= P0 if JOBC = 'E', where P1 is the controllability
C Grammian defined to enforce stability for a modified combination
C method of [4];
C Q = Q0 if JOBO = 'S' (standard combination method [4]);
C Q = Q1 >= Q0 if JOBO = 'E', where Q1 is the observability
C Grammian defined to enforce stability for a modified combination
C method of [4].
C
C If JOBC = JOBO = 'S' and ALPHAC = ALPHAO = 0, the choice of
C Grammians corresponds to the method of Enns [1], while if
C ALPHAC = ALPHAO = 1, the choice of Grammians corresponds
C to the method of Lin and Chiu [2,3].
C
C If JOBC = 'S' and ALPHAC = 1, no pole-zero cancellations must
C occur in G*W. If JOBO = 'S' and ALPHAO = 1, no pole-zero
C cancellations must occur in V*G. The presence of pole-zero
C cancellations leads to meaningless results and must be avoided.
C
C The frequency-weighted Hankel singular values HSV(1), ....,
C HSV(N) are computed as the square roots of the eigenvalues
C of the product P*Q.
C
C REFERENCES
C
C [1] Enns, D.
C Model reduction with balanced realizations: An error bound
C and a frequency weighted generalization.
C Proc. 23-th CDC, Las Vegas, pp. 127-132, 1984.
C
C [2] Lin, C.-A. and Chiu, T.-Y.
C Model reduction via frequency-weighted balanced realization.
C Control Theory and Advanced Technology, vol. 8,
C pp. 341-351, 1992.
C
C [3] Sreeram, V., Anderson, B.D.O and Madievski, A.G.
C New results on frequency weighted balanced reduction
C technique.
C Proc. ACC, Seattle, Washington, pp. 4004-4009, 1995.
C
C [4] Varga, A. and Anderson, B.D.O.
C Square-root balancing-free methods for the frequency-weighted
C balancing related model reduction.
C (report in preparation)
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root
C techniques.
C
C CONTRIBUTORS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, August 2000.
C D. Sima, University of Bucharest, August 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 2000.
C
C REVISIONS
C
C A. Varga, Australian National University, Canberra, November 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000,
C Sep. 2001.
C
C KEYWORDS
C
C Frequency weighting, model reduction, multivariable system,
C state-space model, state-space representation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION C100, ONE, ZERO
PARAMETER ( C100 = 100.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOB, JOBC, JOBO, ORDSEL, WEIGHT
INTEGER INFO, IWARN, LDA, LDAV, LDAW, LDB, LDBV, LDBW,
$ LDC, LDCV, LDCW, LDD, LDDV, LDDW, LDWORK, M, MW,
$ N, NR, NS, NV, NW, P, PV
DOUBLE PRECISION ALPHA, ALPHAC, ALPHAO, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), AV(LDAV,*), AW(LDAW,*),
$ B(LDB,*), BV(LDBV,*), BW(LDBW,*),
$ C(LDC,*), CV(LDCV,*), CW(LDCW,*),
$ D(LDD,*), DV(LDDV,*), DW(LDDW,*), DWORK(*),
$ HSV(*)
C .. Local Scalars ..
LOGICAL BAL, BTA, DISCR, FIXORD, FRWGHT, LEFTW, RIGHTW,
$ SCALE, SPA
INTEGER IERR, IWARNL, KBR, KBV, KBW, KCR, KCV, KCW, KDR,
$ KDV, KI, KL, KT, KTI, KU, KW, LCF, LDW, LW, NMR,
$ NN, NNQ, NNR, NNV, NNW, NRA, NU, NU1, NVR, NWR,
$ PPV, WRKOPT
DOUBLE PRECISION ALPWRK, MAXRED, SCALEC, SCALEO
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL AB09IX, AB09IY, DLACPY, SB08CD, SB08DD, TB01ID,
$ TB01KD, TB01PD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
BTA = LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'F' )
SPA = LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'P' )
BAL = LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'S' )
SCALE = LSAME( EQUIL, 'S' )
FIXORD = LSAME( ORDSEL, 'F' )
LEFTW = LSAME( WEIGHT, 'L' ) .OR. LSAME( WEIGHT, 'B' )
RIGHTW = LSAME( WEIGHT, 'R' ) .OR. LSAME( WEIGHT, 'B' )
FRWGHT = LEFTW .OR. RIGHTW
C
LW = 1
NN = N*N
NNV = N + NV
NNW = N + NW
PPV = MAX( P, PV )
C
IF( LEFTW .AND. PV.GT.0 ) THEN
LW = MAX( LW, NNV*( NNV + MAX( NNV, PV ) + 5 ) )
ELSE
LW = MAX( LW, N*( P + 5 ) )
END IF
C
IF( RIGHTW .AND. MW.GT.0 ) THEN
LW = MAX( LW, NNW*( NNW + MAX( NNW, MW ) + 5 ) )
ELSE
LW = MAX( LW, N*( M + 5 ) )
END IF
LW = 2*NN + MAX( LW, 2*NN + 5*N, N*MAX( M, P ) )
C
IF( LEFTW .AND. NV.GT.0 ) THEN
LCF = PV*( NV + PV ) + PV*NV +
$ MAX( NV*( NV + 5 ), PV*( PV + 2 ), 4*PPV )
IF( PV.EQ.P ) THEN
LW = MAX( LW, LCF, NV + MAX( NV, 3*P ) )
ELSE
LW = MAX( LW, PPV*( 2*NV + PPV ) +
$ MAX( LCF, NV + MAX( NV, 3*PPV ) ) )
END IF
END IF
C
IF( RIGHTW .AND. NW.GT.0 ) THEN
IF( MW.EQ.M ) THEN
LW = MAX( LW, NW + MAX( NW, 3*M ) )
ELSE
LW = MAX( LW, 2*NW*MAX( M, MW ) +
$ NW + MAX( NW, 3*M, 3*MW ) )
END IF
LW = MAX( LW, MW*( NW + MW ) +
$ MAX( NW*( NW + 5 ), MW*( MW + 2 ), 4*MW, 4*M ) )
END IF
C
C Check the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT.( LSAME( JOBC, 'S' ) .OR. LSAME( JOBC, 'E' ) ) )
$ THEN
INFO = -2
ELSE IF( .NOT.( LSAME( JOBO, 'S' ) .OR. LSAME( JOBO, 'E' ) ) )
$ THEN
INFO = -3
ELSE IF( .NOT. ( BTA .OR. SPA ) ) THEN
INFO = -4
ELSE IF( .NOT. ( FRWGHT .OR. LSAME( WEIGHT, 'N' ) ) ) THEN
INFO = -5
ELSE IF( .NOT. ( SCALE .OR. LSAME( EQUIL, 'N' ) ) ) THEN
INFO = -6
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -7
ELSE IF( N.LT.0 ) THEN
INFO = -8
ELSE IF( M.LT.0 ) THEN
INFO = -9
ELSE IF( P.LT.0 ) THEN
INFO = -10
ELSE IF( NV.LT.0 ) THEN
INFO = -11
ELSE IF( PV.LT.0 ) THEN
INFO = -12
ELSE IF( NW.LT.0 ) THEN
INFO = -13
ELSE IF( MW.LT.0 ) THEN
INFO = -14
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -15
ELSE IF( ( DISCR .AND. ( ALPHA.LT.ZERO .OR. ALPHA.GT.ONE ) ) .OR.
$ ( .NOT.DISCR .AND. ALPHA.GT.ZERO ) ) THEN
INFO = -16
ELSE IF( ABS( ALPHAC ).GT.ONE ) THEN
INFO = -17
ELSE IF( ABS( ALPHAO ).GT.ONE ) THEN
INFO = -18
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -20
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -22
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -24
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -26
ELSE IF( LDAV.LT.1 .OR. ( LEFTW .AND. LDAV.LT.NV ) ) THEN
INFO = -28
ELSE IF( LDBV.LT.1 .OR. ( LEFTW .AND. LDBV.LT.NV ) ) THEN
INFO = -30
ELSE IF( LDCV.LT.1 .OR. ( LEFTW .AND. LDCV.LT.PV ) ) THEN
INFO = -32
ELSE IF( LDDV.LT.1 .OR. ( LEFTW .AND. LDDV.LT.PV ) ) THEN
INFO = -34
ELSE IF( LDAW.LT.1 .OR. ( RIGHTW .AND. LDAW.LT.NW ) ) THEN
INFO = -36
ELSE IF( LDBW.LT.1 .OR. ( RIGHTW .AND. LDBW.LT.NW ) ) THEN
INFO = -38
ELSE IF( LDCW.LT.1 .OR. ( RIGHTW .AND. LDCW.LT.M ) ) THEN
INFO = -40
ELSE IF( LDDW.LT.1 .OR. ( RIGHTW .AND. LDDW.LT.M ) ) THEN
INFO = -42
ELSE IF( TOL2.GT.ZERO .AND. .NOT.FIXORD .AND. TOL2.GT.TOL1 ) THEN
INFO = -46
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -49
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09ID', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
NR = 0
NS = 0
IWORK(1) = 0
IWORK(2) = NV
IWORK(3) = NW
DWORK(1) = ONE
RETURN
END IF
C
IF( SCALE ) THEN
C
C Scale simultaneously the matrices A, B and C:
C A <- inv(D)*A*D, B <- inv(D)*B and C <- C*D, where D is a
C diagonal matrix.
C Workspace: N.
C
MAXRED = C100
CALL TB01ID( 'All', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
$ DWORK, INFO )
END IF
C
C Correct the value of ALPHA to ensure stability.
C
ALPWRK = ALPHA
IF( DISCR ) THEN
IF( ALPHA.EQ.ONE ) ALPWRK = ONE - SQRT( DLAMCH( 'E' ) )
ELSE
IF( ALPHA.EQ.ZERO ) ALPWRK = -SQRT( DLAMCH( 'E' ) )
END IF
C
C Allocate working storage.
C
KU = 1
KL = KU + NN
KI = KL + N
KW = KI + N
C
C Reduce A to a block-diagonal real Schur form, with the
C ALPHA-unstable part in the leading diagonal position, using a
C non-orthogonal similarity transformation, A <- inv(T)*A*T, and
C apply the transformation to B and C: B <- inv(T)*B and C <- C*T.
C
C Workspace needed: N*(N+2);
C Additional workspace: need 3*N;
C prefer larger.
C
CALL TB01KD( DICO, 'Unstable', 'General', N, M, P, ALPWRK, A, LDA,
$ B, LDB, C, LDC, NU, DWORK(KU), N, DWORK(KL),
$ DWORK(KI), DWORK(KW), LDWORK-KW+1, IERR )
C
IF( IERR.NE.0 ) THEN
IF( IERR.NE.3 ) THEN
INFO = 1
ELSE
INFO = 2
END IF
RETURN
END IF
C
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C Determine NRA, the desired order for the reduction of stable part.
C
IWARNL = 0
NS = N - NU
IF( FIXORD ) THEN
NRA = MAX( 0, NR-NU )
IF( NR.LT.NU )
$ IWARNL = 3
ELSE
NRA = 0
END IF
C
C Finish if only unstable part is present.
C
IF( NS.EQ.0 ) THEN
NR = NU
DWORK(1) = WRKOPT
IWORK(1) = 0
IWORK(2) = NV
IWORK(3) = NW
RETURN
END IF
C
NVR = NV
IF( LEFTW .AND. NV.GT.0 ) THEN
C
C Compute a left-coprime factorization with inner denominator
C of a minimal realization of V. The resulting AV is in
C real Schur form.
C Workspace needed: real LV+MAX( 1, LCF,
C NV + MAX( NV, 3*P, 3*PV ) ),
C where
C LV = 0 if P = PV and
C LV = MAX(P,PV)*(2*NV+MAX(P,PV))
C otherwise;
C LCF = PV*(NV+PV) +
C MAX( 1, PV*NV + MAX( NV*(NV+5),
C PV*(PV+2),4*PV,4*P ) );
C prefer larger;
C integer NV + MAX(P,PV).
C
IF( P.EQ.PV ) THEN
KW = 1
CALL TB01PD( 'Minimal', 'Scale', NV, P, PV, AV, LDAV,
$ BV, LDBV, CV, LDCV, NVR, ZERO,
$ IWORK, DWORK, LDWORK, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
KBR = 1
KDR = KBR + PV*NVR
KW = KDR + PV*PV
CALL SB08CD( DICO, NVR, P, PV, AV, LDAV, BV, LDBV, CV, LDCV,
$ DV, LDDV, NNQ, NNR, DWORK(KBR), MAX( 1, NVR ),
$ DWORK(KDR), PV, ZERO, DWORK(KW), LDWORK-KW+1,
$ IWARN, IERR )
ELSE
LDW = MAX( P, PV )
KBV = 1
KCV = KBV + NV*LDW
KW = KCV + NV*LDW
CALL DLACPY( 'Full', NV, P, BV, LDBV, DWORK(KBV), NV )
CALL DLACPY( 'Full', PV, NV, CV, LDCV, DWORK(KCV), LDW )
CALL TB01PD( 'Minimal', 'Scale', NV, P, PV, AV, LDAV,
$ DWORK(KBV), NV, DWORK(KCV), LDW, NVR, ZERO,
$ IWORK, DWORK(KW), LDWORK-KW+1, INFO )
KDV = KW
KBR = KDV + LDW*LDW
KDR = KBR + PV*NVR
KW = KDR + PV*PV
CALL DLACPY( 'Full', PV, P, DV, LDDV, DWORK(KDV), LDW )
CALL SB08CD( DICO, NVR, P, PV, AV, LDAV, DWORK(KBV), NV,
$ DWORK(KCV), LDW, DWORK(KDV), LDW, NNQ, NNR,
$ DWORK(KBR), MAX( 1, NVR ), DWORK(KDR), PV,
$ ZERO, DWORK(KW), LDWORK-KW+1, IWARN, IERR )
CALL DLACPY( 'Full', NVR, P, DWORK(KBV), NV, BV, LDBV )
CALL DLACPY( 'Full', PV, NVR, DWORK(KCV), LDW, CV, LDCV )
CALL DLACPY( 'Full', PV, P, DWORK(KDV), LDW, DV, LDDV )
END IF
IF( IERR.NE.0 ) THEN
INFO = IERR + 2
RETURN
END IF
NVR = NNQ
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
IF( IWARN.GT.0 )
$ IWARN = 10 + IWARN
END IF
C
NWR = NW
IF( RIGHTW .AND. NW.GT.0 ) THEN
C
C Compute a minimal realization of W.
C Workspace needed: real LW+MAX(1, NW + MAX(NW, 3*M, 3*MW));
C where
C LW = 0, if M = MW and
C LW = 2*NW*MAX(M,MW), otherwise;
C prefer larger;
C integer NW + MAX(M,MW).
C
IF( M.EQ.MW ) THEN
KW = 1
CALL TB01PD( 'Minimal', 'Scale', NW, MW, M, AW, LDAW,
$ BW, LDBW, CW, LDCW, NWR, ZERO, IWORK, DWORK,
$ LDWORK, INFO )
ELSE
LDW = MAX( M, MW )
KBW = 1
KCW = KBW + NW*LDW
KW = KCW + NW*LDW
CALL DLACPY( 'Full', NW, MW, BW, LDBW, DWORK(KBW), NW )
CALL DLACPY( 'Full', M, NW, CW, LDCW, DWORK(KCW), LDW )
CALL TB01PD( 'Minimal', 'Scale', NW, MW, M, AW, LDAW,
$ DWORK(KBW), NW, DWORK(KCW), LDW, NWR, ZERO,
$ IWORK, DWORK(KW), LDWORK-KW+1, INFO )
CALL DLACPY( 'Full', NWR, MW, DWORK(KBW), NW, BW, LDBW )
CALL DLACPY( 'Full', M, NWR, DWORK(KCW), LDW, CW, LDCW )
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
END IF
C
IF( RIGHTW .AND. NWR.GT.0 ) THEN
C
C Compute a right-coprime factorization with inner denominator
C of the minimal realization of W. The resulting AW is in
C real Schur form.
C
C Workspace needed: MW*(NW+MW) +
C MAX( 1, NW*(NW+5), MW*(MW+2), 4*MW, 4*M );
C prefer larger.
C
LDW = MAX( 1, MW )
KCR = 1
KDR = KCR + NWR*LDW
KW = KDR + MW*LDW
CALL SB08DD( DICO, NWR, MW, M, AW, LDAW, BW, LDBW, CW, LDCW,
$ DW, LDDW, NNQ, NNR, DWORK(KCR), LDW, DWORK(KDR),
$ LDW, ZERO, DWORK(KW), LDWORK-KW+1, IWARN, IERR )
IF( IERR.NE.0 ) THEN
INFO = IERR + 5
RETURN
END IF
NWR = NNQ
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
IF( IWARN.GT.0 )
$ IWARN = 10 + IWARN
END IF
C
NU1 = NU + 1
C
C Allocate working storage.
C
KT = 1
KTI = KT + NN
KW = KTI + NN
C
C Compute in DWORK(KTI) and DWORK(KT) the Cholesky factors S and R
C of the controllability and observability Grammians, respectively.
C Real workspace: need 2*N*N + MAX( 1, LLEFT, LRIGHT ),
C where
C LLEFT = (N+NV)*(N+NV+MAX(N+NV,PV)+5)
C if WEIGHT = 'L' or 'B' and PV > 0;
C LLEFT = N*(P+5) if WEIGHT = 'R' or 'N' or PV = 0;
C LRIGHT = (N+NW)*(N+NW+MAX(N+NW,MW)+5)
C if WEIGHT = 'R' or 'B' and MW > 0;
C LRIGHT = N*(M+5) if WEIGHT = 'L' or 'N' or MW = 0.
C prefer larger.
C
CALL AB09IY( DICO, JOBC, JOBO, WEIGHT, NS, M, P, NVR, PV, NWR,
$ MW, ALPHAC, ALPHAO, A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, AV, LDAV, BV, LDBV, CV, LDCV,
$ DV, LDDV, AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
$ SCALEC, SCALEO, DWORK(KTI), N, DWORK(KT), N,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 9
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Compute a BTA or SPA of the stable part.
C Real workspace: need 2*N*N + MAX( 1, 2*N*N+5*N, N*MAX(M,P) ).
C
CALL AB09IX( DICO, JOB, 'Schur', ORDSEL, NS, M, P, NRA,
$ SCALEC, SCALEO, A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, DWORK(KTI), N, DWORK(KT), N,
$ NMR, HSV, TOL1, TOL2, IWORK, DWORK(KW), LDWORK-KW+1,
$ IWARN, IERR )
IWARN = MAX( IWARN, IWARNL )
IF( IERR.NE.0 ) THEN
INFO = 10
RETURN
END IF
NR = NRA + NU
C
DWORK(1) = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
IWORK(1) = NMR
IWORK(2) = NVR
IWORK(3) = NWR
C
RETURN
C *** Last line of AB09ID ***
END
|