1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
SUBROUTINE AB09IX( DICO, JOB, FACT, ORDSEL, N, M, P, NR,
$ SCALEC, SCALEO, A, LDA, B, LDB, C, LDC, D, LDD,
$ TI, LDTI, T, LDT, NMINR, HSV, TOL1, TOL2,
$ IWORK, DWORK, LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr,Dr) for an original
C state-space representation (A,B,C,D) by using the square-root or
C balancing-free square-root Balance & Truncate (B&T) or
C Singular Perturbation Approximation (SPA) model reduction methods.
C The computation of truncation matrices TI and T is based on
C the Cholesky factor S of a controllability Grammian P = S*S'
C and the Cholesky factor R of an observability Grammian Q = R'*R,
C where S and R are given upper triangular matrices.
C
C For the B&T approach, the matrices of the reduced order system
C are computed using the truncation formulas:
C
C Ar = TI * A * T , Br = TI * B , Cr = C * T . (1)
C
C For the SPA approach, the matrices of a minimal realization
C (Am,Bm,Cm) are computed using the truncation formulas:
C
C Am = TI * A * T , Bm = TI * B , Cm = C * T . (2)
C
C Am, Bm, Cm and D serve further for computing the SPA of the given
C system.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOB CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root B&T method;
C = 'F': use the balancing-free square-root B&T method;
C = 'S': use the square-root SPA method;
C = 'P': use the balancing-free square-root SPA method.
C
C FACT CHARACTER*1
C Specifies whether or not, on entry, the matrix A is in a
C real Schur form, as follows:
C = 'S': A is in a real Schur form;
C = 'N': A is a general dense square matrix.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL1.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation,
C i.e., the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of
C the resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. NR is set as follows:
C if ORDSEL = 'F', NR is equal to MIN(NR,NMINR), where NR
C is the desired order on entry and NMINR is the number of
C the Hankel singular values greater than N*EPS*S1, where
C EPS is the machine precision (see LAPACK Library Routine
C DLAMCH) and S1 is the largest Hankel singular value
C (computed in HSV(1));
C NR can be further reduced to ensure HSV(NR) > HSV(NR+1);
C if ORDSEL = 'A', NR is equal to the number of Hankel
C singular values greater than MAX(TOL1,N*EPS*S1).
C
C SCALEC (input) DOUBLE PRECISION
C Scaling factor for the Cholesky factor S of the
C controllability Grammian, i.e., S/SCALEC is used to
C compute the Hankel singular values. SCALEC > 0.
C
C SCALEO (input) DOUBLE PRECISION
C Scaling factor for the Cholesky factor R of the
C observability Grammian, i.e., R/SCALEO is used to
C compute the Hankel singular values. SCALEO > 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A. If FACT = 'S',
C A is in a real Schur form.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the
C reduced order system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, if JOB = 'S' or JOB = 'P', the leading P-by-M
C part of this array must contain the original input/output
C matrix D.
C On exit, if INFO = 0 and JOB = 'S' or JOB = 'P', the
C leading P-by-M part of this array contains the
C input/output matrix Dr of the reduced order system.
C If JOB = 'B' or JOB = 'F', this array is not referenced.
C
C LDD INTEGER
C The leading dimension of array D.
C LDD >= 1, if JOB = 'B' or JOB = 'F';
C LDD >= MAX(1,P), if JOB = 'S' or JOB = 'P'.
C
C TI (input/output) DOUBLE PRECISION array, dimension (LDTI,N)
C On entry, the leading N-by-N upper triangular part of
C this array must contain the Cholesky factor S of a
C controllability Grammian P = S*S'.
C On exit, if INFO = 0, and NR > 0, the leading NMINR-by-N
C part of this array contains the left truncation matrix
C TI in (1), for the B&T approach, or in (2), for the
C SPA approach.
C
C LDTI INTEGER
C The leading dimension of array TI. LDTI >= MAX(1,N).
C
C T (input/output) DOUBLE PRECISION array, dimension (LDT,N)
C On entry, the leading N-by-N upper triangular part of
C this array must contain the Cholesky factor R of an
C observability Grammian Q = R'*R.
C On exit, if INFO = 0, and NR > 0, the leading N-by-NMINR
C part of this array contains the right truncation matrix
C T in (1), for the B&T approach, or in (2), for the
C SPA approach.
C
C LDT INTEGER
C The leading dimension of array T. LDT >= MAX(1,N).
C
C NMINR (output) INTEGER
C The number of Hankel singular values greater than
C MAX(TOL2,N*EPS*S1).
C Note: If S and R are the Cholesky factors of the
C controllability and observability Grammians of the
C original system (A,B,C,D), respectively, then NMINR is
C the order of a minimal realization of the original system.
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, it contains the Hankel singular values,
C ordered decreasingly. The Hankel singular values are
C singular values of the product R*S.
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If ORDSEL = 'A', TOL1 contains the tolerance for
C determining the order of the reduced system.
C For model reduction, the recommended value lies in the
C interval [0.00001,0.001].
C If TOL1 <= 0 on entry, the used default value is
C TOL1 = N*EPS*S1, where EPS is the machine precision
C (see LAPACK Library Routine DLAMCH) and S1 is the largest
C Hankel singular value (computed in HSV(1)).
C If ORDSEL = 'F', the value of TOL1 is ignored.
C
C TOL2 DOUBLE PRECISION
C The tolerance for determining the order of a minimal
C realization of the system.
C The recommended value is TOL2 = N*EPS*S1.
C This value is used by default if TOL2 <= 0 on entry.
C If TOL2 > 0, and ORDSEL = 'A', then TOL2 <= TOL1.
C
C Workspace
C
C IWORK INTEGER array, dimension LIWORK, where
C LIWORK = 0, if JOB = 'B';
C LIWORK = N, if JOB = 'F';
C LIWORK = 2*N, if JOB = 'S' or 'P'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( 1, 2*N*N + 5*N, N*MAX(M,P) ).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than NMINR, the order of a minimal realization of
C the given system; in this case, the resulting NR is
C set automatically to NMINR;
C = 2: with ORDSEL = 'F', the selected order NR corresponds
C to repeated singular values, which are neither all
C included nor all excluded from the reduced model;
C in this case, the resulting NR is set automatically
C to the largest value such that HSV(NR) > HSV(NR+1).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the computation of Hankel singular values failed.
C
C METHOD
C
C Let be the stable linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) + Du(t), (3)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09IX determines for
C the given system (3), the matrices of a reduced NR order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) + Dr*u(t), (4)
C
C by using the square-root or balancing-free square-root
C Balance & Truncate (B&T) or Singular Perturbation Approximation
C (SPA) model reduction methods.
C
C The projection matrices TI and T are determined using the
C Cholesky factors S and R of a controllability Grammian P and an
C observability Grammian Q.
C The Hankel singular values HSV(1), ...., HSV(N) are computed as
C singular values of the product R*S.
C
C If JOB = 'B', the square-root Balance & Truncate technique
C of [1] is used.
C
C If JOB = 'F', the balancing-free square-root version of the
C Balance & Truncate technique [2] is used.
C
C If JOB = 'S', the square-root version of the Singular Perturbation
C Approximation method [3,4] is used.
C
C If JOB = 'P', the balancing-free square-root version of the
C Singular Perturbation Approximation method [3,4] is used.
C
C REFERENCES
C
C [1] Tombs M.S. and Postlethwaite I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C [2] Varga A.
C Efficient minimal realization procedure based on balancing.
C Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
C A. El Moudni, P. Borne, S. G. Tzafestas (Eds.),
C Vol. 2, pp. 42-46.
C
C [3] Liu Y. and Anderson B.D.O.
C Singular Perturbation Approximation of balanced systems.
C Int. J. Control, Vol. 50, pp. 1379-1405, 1989.
C
C [4] Varga A.
C Balancing-free square-root algorithm for computing singular
C perturbation approximations.
C Proc. 30-th CDC, Brighton, Dec. 11-13, 1991,
C Vol. 2, pp. 1062-1065.
C
C NUMERICAL ASPECTS
C
C The implemented method relies on accuracy enhancing square-root
C or balancing-free square-root methods.
C
C CONTRIBUTORS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, August 2000.
C D. Sima, University of Bucharest, August 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 2000.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000,
C Sep. 2001.
C
C KEYWORDS
C
C Balance and truncate, minimal state-space representation,
C model reduction, multivariable system,
C singular perturbation approximation, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD, LDT, LDTI,
$ LDWORK, M, N, NMINR, NR, P
DOUBLE PRECISION SCALEC, SCALEO, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), HSV(*), T(LDT,*), TI(LDTI,*)
C .. Local Scalars ..
LOGICAL BAL, BTA, DISCR, FIXORD, RSF, SPA
INTEGER IERR, IJ, J, K, KTAU, KU, KV, KW, LDW, LW,
$ NRED, NR1, NS, WRKOPT
DOUBLE PRECISION ATOL, RCOND, SKP, TEMP, TOLDEF
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL AB09DD, DGEMM, DGEMV, DGEQRF, DGETRF, DGETRS,
$ DLACPY, DORGQR, DSCAL, DTRMM, DTRMV, MA02AD,
$ MB03UD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
BTA = LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'F' )
SPA = LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'P' )
BAL = LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'S' )
RSF = LSAME( FACT, 'S' )
FIXORD = LSAME( ORDSEL, 'F' )
C
LW = MAX( 1, 2*N*N + 5*N, N*MAX( M, P ) )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( BTA .OR. SPA ) ) THEN
INFO = -2
ELSE IF( .NOT. ( RSF .OR. LSAME( FACT, 'N' ) ) ) THEN
INFO = -3
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( M.LT.0 ) THEN
INFO = -6
ELSE IF( P.LT.0 ) THEN
INFO = -7
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -8
ELSE IF( SCALEC.LE.ZERO ) THEN
INFO = -9
ELSE IF( SCALEO.LE.ZERO ) THEN
INFO = -10
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -16
ELSE IF( LDD.LT.1 .OR. ( SPA .AND. LDD.LT.P ) ) THEN
INFO = -18
ELSE IF( LDTI.LT.MAX( 1, N ) ) THEN
INFO = -20
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -22
ELSE IF( TOL2.GT.ZERO .AND. .NOT.FIXORD .AND. TOL2.GT.TOL1 ) THEN
INFO = -26
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -29
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09IX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
NR = 0
NMINR = 0
DWORK(1) = ONE
RETURN
END IF
C
C Save S in DWORK(KV).
C
KV = 1
KU = KV + N*N
KW = KU + N*N
CALL DLACPY( 'Upper', N, N, TI, LDTI, DWORK(KV), N )
C | x x |
C Compute R*S in the form | 0 x | in TI.
C
DO 10 J = 1, N
CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', J, T, LDT,
$ TI(1,J), 1 )
10 CONTINUE
C
C Compute the singular value decomposition R*S = V*Sigma*UT of the
C upper triangular matrix R*S, with UT in TI and V in DWORK(KU).
C
C Workspace: need 2*N*N + 5*N;
C prefer larger.
C
CALL MB03UD( 'Vectors', 'Vectors', N, TI, LDTI, DWORK(KU), N, HSV,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 1
RETURN
ENDIF
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C Scale the singular values.
C
CALL DSCAL( N, ONE / SCALEC / SCALEO, HSV, 1 )
C
C Partition Sigma, U and V conformally as:
C
C Sigma = diag(Sigma1,Sigma2,Sigma3), U = [U1,U2,U3] (U' in TI) and
C V = [V1,V2,V3] (in DWORK(KU)).
C
C Compute NMINR, the order of a minimal realization, as the order
C of [Sigma1 Sigma2].
C
TOLDEF = DBLE( N )*DLAMCH( 'Epsilon' )
ATOL = MAX( TOL2, TOLDEF*HSV(1) )
NMINR = N
20 IF( NMINR.GT.0 ) THEN
IF( HSV(NMINR).LE.ATOL ) THEN
NMINR = NMINR - 1
GO TO 20
END IF
END IF
C
C Compute the order NR of reduced system, as the order of Sigma1.
C
IF( FIXORD ) THEN
C
C Check if the desired order is less than the order of a minimal
C realization.
C
IF( NR.GT.NMINR ) THEN
C
C Reduce the order to NMINR.
C
NR = NMINR
IWARN = 1
END IF
C
C Check for singular value multiplicity at cut-off point.
C
IF( NR.GT.0 .AND. NR.LT.NMINR ) THEN
SKP = HSV(NR)
IF( SKP-HSV(NR+1).LE.TOLDEF*SKP ) THEN
IWARN = 2
C
C Reduce the order such that HSV(NR) > HSV(NR+1).
C
30 NR = NR - 1
IF( NR.GT.0 ) THEN
IF( HSV(NR)-SKP.LE.TOLDEF*SKP ) GO TO 30
END IF
END IF
END IF
ELSE
C
C The order is given as the number of singular values
C exceeding MAX( TOL1, N*EPS*HSV(1) ).
C
ATOL = MAX( TOL1, ATOL )
NR = 0
DO 40 J = 1, NMINR
IF( HSV(J).LE.ATOL ) GO TO 50
NR = NR + 1
40 CONTINUE
50 CONTINUE
ENDIF
C
C Finish if the order is zero.
C
IF( NR.EQ.0 ) THEN
IF( SPA )
$ CALL AB09DD( DICO, N, M, P, NR, A, LDA, B, LDB, C, LDC,
$ D, LDD, RCOND, IWORK, DWORK, IERR )
DWORK(1) = WRKOPT
RETURN
END IF
C
C Compute NS, the order of Sigma2. For BTA, NS = 0.
C
IF( SPA ) THEN
NRED = NMINR
ELSE
NRED = NR
END IF
NS = NRED - NR
C
C Compute the truncation matrices.
C
C Compute TI' = | TI1' TI2' | = R'*| V1 V2 | in DWORK(KU).
C
CALL DTRMM( 'Left', 'Upper', 'Transpose', 'NonUnit', N, NRED,
$ ONE, T, LDT, DWORK(KU), N )
C
C Compute T = | T1 T2 | = S*| U1 U2 | .
C
CALL MA02AD( 'Full', NRED, N, TI, LDTI, T, LDT )
CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', N,
$ NRED, ONE, DWORK(KV), N, T, LDT )
C
KTAU = KW
IF( BAL ) THEN
IJ = KU
C
C Square-Root B&T/SPA method.
C
C Compute the truncation matrices for balancing
C -1/2 -1/2
C T1*Sigma1 and TI1'*Sigma1 .
C
DO 60 J = 1, NR
TEMP = ONE/SQRT( HSV(J) )
CALL DSCAL( N, TEMP, T(1,J), 1 )
CALL DSCAL( N, TEMP, DWORK(IJ), 1 )
IJ = IJ + N
60 CONTINUE
C
ELSE
C
C Balancing-Free B&T/SPA method.
C
C Compute orthogonal bases for the images of matrices T1 and
C TI1'.
C
C Workspace: need 2*N*N + 2*N;
C prefer larger.
C
KW = KTAU + NR
LDW = LDWORK - KW + 1
CALL DGEQRF( N, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW, IERR )
CALL DORGQR( N, NR, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
CALL DGEQRF( N, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
CALL DORGQR( N, NR, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW),
$ LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
ENDIF
C
IF( NS.GT.0 ) THEN
C
C Compute orthogonal bases for the images of matrices T2 and
C TI2'.
C
C Workspace: need 2*N*N + 2*N;
C prefer larger.
C
NR1 = NR + 1
KW = KTAU + NS
LDW = LDWORK - KW + 1
CALL DGEQRF( N, NS, T(1,NR1), LDT, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
CALL DORGQR( N, NS, NS, T(1,NR1), LDT, DWORK(KTAU), DWORK(KW),
$ LDW, IERR )
CALL DGEQRF( N, NS, DWORK(KU+N*NR), N, DWORK(KTAU), DWORK(KW),
$ LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
CALL DORGQR( N, NS, NS, DWORK(KU+N*NR), N, DWORK(KTAU),
$ DWORK(KW), LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
ENDIF
C
C Transpose TI' in TI.
C
CALL MA02AD( 'Full', N, NRED, DWORK(KU), N, TI, LDTI )
C
IF( .NOT.BAL ) THEN
C -1
C Compute (TI1*T1) *TI1 in TI.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', NR, NR, N, ONE, TI,
$ LDTI, T, LDT, ZERO, DWORK(KU), N )
CALL DGETRF( NR, NR, DWORK(KU), N, IWORK, IERR )
CALL DGETRS( 'NoTranspose', NR, N, DWORK(KU), N, IWORK, TI,
$ LDTI, IERR )
C
IF( NS.GT.0 ) THEN
C -1
C Compute (TI2*T2) *TI2 in TI2.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', NS, NS, N, ONE,
$ TI(NR1,1), LDTI, T(1,NR1), LDT, ZERO, DWORK(KU),
$ N )
CALL DGETRF( NS, NS, DWORK(KU), N, IWORK, IERR )
CALL DGETRS( 'NoTranspose', NS, N, DWORK(KU), N, IWORK,
$ TI(NR1,1), LDTI, IERR )
END IF
END IF
C
C Compute TI*A*T. Exploit RSF of A if possible.
C Workspace: need N*N.
C
IF( RSF ) THEN
IJ = 1
DO 80 J = 1, N
K = MIN( J+1, N )
CALL DGEMV( 'NoTranspose', NRED, K, ONE, TI, LDTI,
$ A(1,J), 1, ZERO, DWORK(IJ), 1 )
IJ = IJ + N
80 CONTINUE
ELSE
CALL DGEMM( 'NoTranspose', 'NoTranspose', NRED, N, N, ONE,
$ TI, LDTI, A, LDA, ZERO, DWORK, N )
END IF
CALL DGEMM( 'NoTranspose', 'NoTranspose', NRED, NRED, N, ONE,
$ DWORK, N, T, LDT, ZERO, A, LDA )
C
C Compute TI*B and C*T.
C Workspace: need N*MAX(M,P).
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK, N )
CALL DGEMM( 'NoTranspose', 'NoTranspose', NRED, M, N, ONE, TI,
$ LDTI, DWORK, N, ZERO, B, LDB )
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK, P )
CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NRED, N, ONE,
$ DWORK, P, T, LDT, ZERO, C, LDC )
C
C Compute the singular perturbation approximation if possible.
C Note that IERR = 1 on exit from AB09DD cannot appear here.
C
C Workspace: need real 4*(NMINR-NR);
C need integer 2*(NMINR-NR).
C
IF( SPA) THEN
CALL AB09DD( DICO, NRED, M, P, NR, A, LDA, B, LDB,
$ C, LDC, D, LDD, RCOND, IWORK, DWORK, IERR )
ELSE
NMINR = NR
END IF
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of AB09IX ***
END
|