1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
|
SUBROUTINE AB09JD( JOBV, JOBW, JOBINV, DICO, EQUIL, ORDSEL,
$ N, NV, NW, M, P, NR, ALPHA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AV, LDAV, BV, LDBV,
$ CV, LDCV, DV, LDDV, AW, LDAW, BW, LDBW,
$ CW, LDCW, DW, LDDW, NS, HSV, TOL1, TOL2,
$ IWORK, DWORK, LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr,Dr) for an original
C state-space representation (A,B,C,D) by using the frequency
C weighted optimal Hankel-norm approximation method.
C The Hankel norm of the weighted error
C
C op(V)*(G-Gr)*op(W)
C
C is minimized, where G and Gr are the transfer-function matrices
C of the original and reduced systems, respectively, V and W are
C invertible transfer-function matrices representing the left and
C right frequency weights, and op(X) denotes X, inv(X), conj(X) or
C conj(inv(X)). V and W are specified by their state space
C realizations (AV,BV,CV,DV) and (AW,BW,CW,DW), respectively.
C When minimizing ||V*(G-Gr)*W||, V and W must be antistable.
C When minimizing inv(V)*(G-Gr)*inv(W), V and W must have only
C antistable zeros.
C When minimizing conj(V)*(G-Gr)*conj(W), V and W must be stable.
C When minimizing conj(inv(V))*(G-Gr)*conj(inv(W)), V and W must
C be minimum-phase.
C If the original system is unstable, then the frequency weighted
C Hankel-norm approximation is computed only for the
C ALPHA-stable part of the system.
C
C For a transfer-function matrix G, conj(G) denotes the conjugate
C of G given by G'(-s) for a continuous-time system or G'(1/z)
C for a discrete-time system.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBV CHARACTER*1
C Specifies the left frequency-weighting as follows:
C = 'N': V = I;
C = 'V': op(V) = V;
C = 'I': op(V) = inv(V);
C = 'C': op(V) = conj(V);
C = 'R': op(V) = conj(inv(V)).
C
C JOBW CHARACTER*1
C Specifies the right frequency-weighting as follows:
C = 'N': W = I;
C = 'W': op(W) = W;
C = 'I': op(W) = inv(W);
C = 'C': op(W) = conj(W);
C = 'R': op(W) = conj(inv(W)).
C
C JOBINV CHARACTER*1
C Specifies the computational approach to be used as
C follows:
C = 'N': use the inverse free descriptor system approach;
C = 'I': use the inversion based standard approach;
C = 'A': switch automatically to the inverse free
C descriptor approach in case of badly conditioned
C feedthrough matrices in V or W (see METHOD).
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to preliminarily
C equilibrate the triplet (A,B,C) as follows:
C = 'S': perform equilibration (scaling);
C = 'N': do not perform equilibration.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL1.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation,
C i.e., the order of the matrix A. N >= 0.
C
C NV (input) INTEGER
C The order of the realization of the left frequency
C weighting V, i.e., the order of the matrix AV. NV >= 0.
C
C NW (input) INTEGER
C The order of the realization of the right frequency
C weighting W, i.e., the order of the matrix AW. NW >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of
C the resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. For a system with NU ALPHA-unstable
C eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
C NR is set as follows: if ORDSEL = 'F', NR is equal to
C NU+MIN(MAX(0,NR-NU-KR+1),NMIN), where KR is the
C multiplicity of the Hankel singular value HSV(NR-NU+1),
C NR is the desired order on entry, and NMIN is the order
C of a minimal realization of the ALPHA-stable part of the
C given system; NMIN is determined as the number of Hankel
C singular values greater than NS*EPS*HNORM(As,Bs,Cs), where
C EPS is the machine precision (see LAPACK Library Routine
C DLAMCH) and HNORM(As,Bs,Cs) is the Hankel norm of the
C ALPHA-stable part of the weighted system (computed in
C HSV(1));
C if ORDSEL = 'A', NR is the sum of NU and the number of
C Hankel singular values greater than
C MAX(TOL1,NS*EPS*HNORM(As,Bs,Cs)).
C
C ALPHA (input) DOUBLE PRECISION
C Specifies the ALPHA-stability boundary for the eigenvalues
C of the state dynamics matrix A. For a continuous-time
C system (DICO = 'C'), ALPHA <= 0 is the boundary value for
C the real parts of eigenvalues, while for a discrete-time
C system (DICO = 'D'), 0 <= ALPHA <= 1 represents the
C boundary value for the moduli of eigenvalues.
C The ALPHA-stability domain does not include the boundary.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the
C reduced order system in a real Schur form.
C The resulting A has a block-diagonal form with two blocks.
C For a system with NU ALPHA-unstable eigenvalues and
C NS ALPHA-stable eigenvalues (NU+NS = N), the leading
C NU-by-NU block contains the unreduced part of A
C corresponding to ALPHA-unstable eigenvalues.
C The trailing (NR+NS-N)-by-(NR+NS-N) block contains
C the reduced part of A corresponding to ALPHA-stable
C eigenvalues.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the original input/output matrix D.
C On exit, if INFO = 0, the leading P-by-M part of this
C array contains the input/output matrix Dr of the reduced
C order system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C AV (input/output) DOUBLE PRECISION array, dimension (LDAV,NV)
C On entry, if JOBV <> 'N', the leading NV-by-NV part of
C this array must contain the state matrix AV of a state
C space realization of the left frequency weighting V.
C On exit, if JOBV <> 'N', and INFO = 0, the leading
C NV-by-NV part of this array contains the real Schur form
C of AV.
C AV is not referenced if JOBV = 'N'.
C
C LDAV INTEGER
C The leading dimension of the array AV.
C LDAV >= MAX(1,NV), if JOBV <> 'N';
C LDAV >= 1, if JOBV = 'N'.
C
C BV (input/output) DOUBLE PRECISION array, dimension (LDBV,P)
C On entry, if JOBV <> 'N', the leading NV-by-P part of
C this array must contain the input matrix BV of a state
C space realization of the left frequency weighting V.
C On exit, if JOBV <> 'N', and INFO = 0, the leading
C NV-by-P part of this array contains the transformed
C input matrix BV corresponding to the transformed AV.
C BV is not referenced if JOBV = 'N'.
C
C LDBV INTEGER
C The leading dimension of the array BV.
C LDBV >= MAX(1,NV), if JOBV <> 'N';
C LDBV >= 1, if JOBV = 'N'.
C
C CV (input/output) DOUBLE PRECISION array, dimension (LDCV,NV)
C On entry, if JOBV <> 'N', the leading P-by-NV part of
C this array must contain the output matrix CV of a state
C space realization of the left frequency weighting V.
C On exit, if JOBV <> 'N', and INFO = 0, the leading
C P-by-NV part of this array contains the transformed output
C matrix CV corresponding to the transformed AV.
C CV is not referenced if JOBV = 'N'.
C
C LDCV INTEGER
C The leading dimension of the array CV.
C LDCV >= MAX(1,P), if JOBV <> 'N';
C LDCV >= 1, if JOBV = 'N'.
C
C DV (input) DOUBLE PRECISION array, dimension (LDDV,P)
C If JOBV <> 'N', the leading P-by-P part of this array
C must contain the feedthrough matrix DV of a state space
C realization of the left frequency weighting V.
C DV is not referenced if JOBV = 'N'.
C
C LDDV INTEGER
C The leading dimension of the array DV.
C LDDV >= MAX(1,P), if JOBV <> 'N';
C LDDV >= 1, if JOBV = 'N'.
C
C AW (input/output) DOUBLE PRECISION array, dimension (LDAW,NW)
C On entry, if JOBW <> 'N', the leading NW-by-NW part of
C this array must contain the state matrix AW of a state
C space realization of the right frequency weighting W.
C On exit, if JOBW <> 'N', and INFO = 0, the leading
C NW-by-NW part of this array contains the real Schur form
C of AW.
C AW is not referenced if JOBW = 'N'.
C
C LDAW INTEGER
C The leading dimension of the array AW.
C LDAW >= MAX(1,NW), if JOBW <> 'N';
C LDAW >= 1, if JOBW = 'N'.
C
C BW (input/output) DOUBLE PRECISION array, dimension (LDBW,M)
C On entry, if JOBW <> 'N', the leading NW-by-M part of
C this array must contain the input matrix BW of a state
C space realization of the right frequency weighting W.
C On exit, if JOBW <> 'N', and INFO = 0, the leading
C NW-by-M part of this array contains the transformed
C input matrix BW corresponding to the transformed AW.
C BW is not referenced if JOBW = 'N'.
C
C LDBW INTEGER
C The leading dimension of the array BW.
C LDBW >= MAX(1,NW), if JOBW <> 'N';
C LDBW >= 1, if JOBW = 'N'.
C
C CW (input/output) DOUBLE PRECISION array, dimension (LDCW,NW)
C On entry, if JOBW <> 'N', the leading M-by-NW part of
C this array must contain the output matrix CW of a state
C space realization of the right frequency weighting W.
C On exit, if JOBW <> 'N', and INFO = 0, the leading
C M-by-NW part of this array contains the transformed output
C matrix CW corresponding to the transformed AW.
C CW is not referenced if JOBW = 'N'.
C
C LDCW INTEGER
C The leading dimension of the array CW.
C LDCW >= MAX(1,M), if JOBW <> 'N';
C LDCW >= 1, if JOBW = 'N'.
C
C DW (input) DOUBLE PRECISION array, dimension (LDDW,M)
C If JOBW <> 'N', the leading M-by-M part of this array
C must contain the feedthrough matrix DW of a state space
C realization of the right frequency weighting W.
C DW is not referenced if JOBW = 'N'.
C
C LDDW INTEGER
C The leading dimension of the array DW.
C LDDW >= MAX(1,M), if JOBW <> 'N';
C LDDW >= 1, if JOBW = 'N'.
C
C NS (output) INTEGER
C The dimension of the ALPHA-stable subsystem.
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, the leading NS elements of this array contain
C the Hankel singular values, ordered decreasingly, of the
C projection G1s of op(V)*G1*op(W) (see METHOD), where G1
C is the ALPHA-stable part of the original system.
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If ORDSEL = 'A', TOL1 contains the tolerance for
C determining the order of reduced system.
C For model reduction, the recommended value is
C TOL1 = c*HNORM(G1s), where c is a constant in the
C interval [0.00001,0.001], and HNORM(G1s) is the
C Hankel-norm of the projection G1s of op(V)*G1*op(W)
C (see METHOD), computed in HSV(1).
C If TOL1 <= 0 on entry, the used default value is
C TOL1 = NS*EPS*HNORM(G1s), where NS is the number of
C ALPHA-stable eigenvalues of A and EPS is the machine
C precision (see LAPACK Library Routine DLAMCH).
C If ORDSEL = 'F', the value of TOL1 is ignored.
C TOL1 < 1.
C
C TOL2 DOUBLE PRECISION
C The tolerance for determining the order of a minimal
C realization of the ALPHA-stable part of the given system.
C The recommended value is TOL2 = NS*EPS*HNORM(G1s).
C This value is used by default if TOL2 <= 0 on entry.
C If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
C TOL2 < 1.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK = MAX(1,M,c,d), if DICO = 'C',
C LIWORK = MAX(1,N,M,c,d), if DICO = 'D', where
C c = 0, if JOBV = 'N',
C c = MAX(2*P,NV+P+N+6,2*NV+P+2), if JOBV <> 'N',
C d = 0, if JOBW = 'N',
C d = MAX(2*M,NW+M+N+6,2*NW+M+2), if JOBW <> 'N'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( LDW1, LDW2, LDW3, LDW4 ), where
C for NVP = NV+P and NWM = NW+M we have
C LDW1 = 0 if JOBV = 'N' and
C LDW1 = 2*NVP*(NVP+P) + P*P +
C MAX( 2*NVP*NVP + MAX( 11*NVP+16, P*NVP ),
C NVP*N + MAX( NVP*N+N*N, P*N, P*M ) )
C if JOBV <> 'N',
C LDW2 = 0 if JOBW = 'N' and
C LDW2 = 2*NWM*(NWM+M) + M*M +
C MAX( 2*NWM*NWM + MAX( 11*NWM+16, M*NWM ),
C NWM*N + MAX( NWM*N+N*N, M*N, P*M ) )
C if JOBW <> 'N',
C LDW3 = N*(2*N + MAX(N,M,P) + 5) + N*(N+1)/2,
C LDW4 = N*(M+P+2) + 2*M*P + MIN(N,M) +
C MAX( 3*M+1, MIN(N,M)+P ).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than NSMIN, the sum of the order of the
C ALPHA-unstable part and the order of a minimal
C realization of the ALPHA-stable part of the given
C system. In this case, the resulting NR is set equal
C to NSMIN.
C = 2: with ORDSEL = 'F', the selected order NR is less
C than the order of the ALPHA-unstable part of the
C given system. In this case NR is set equal to the
C order of the ALPHA-unstable part.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the computation of the ordered real Schur form of A
C failed;
C = 2: the separation of the ALPHA-stable/unstable
C diagonal blocks failed because of very close
C eigenvalues;
C = 3: the reduction of AV to a real Schur form failed;
C = 4: the reduction of AW to a real Schur form failed;
C = 5: the reduction to generalized Schur form of the
C descriptor pair corresponding to the inverse of V
C failed;
C = 6: the reduction to generalized Schur form of the
C descriptor pair corresponding to the inverse of W
C failed;
C = 7: the computation of Hankel singular values failed;
C = 8: the computation of stable projection in the
C Hankel-norm approximation algorithm failed;
C = 9: the order of computed stable projection in the
C Hankel-norm approximation algorithm differs
C from the order of Hankel-norm approximation;
C = 10: the reduction of AV-BV*inv(DV)*CV to a
C real Schur form failed;
C = 11: the reduction of AW-BW*inv(DW)*CW to a
C real Schur form failed;
C = 12: the solution of the Sylvester equation failed
C because the poles of V (if JOBV = 'V') or of
C conj(V) (if JOBV = 'C') are not distinct from
C the poles of G1 (see METHOD);
C = 13: the solution of the Sylvester equation failed
C because the poles of W (if JOBW = 'W') or of
C conj(W) (if JOBW = 'C') are not distinct from
C the poles of G1 (see METHOD);
C = 14: the solution of the Sylvester equation failed
C because the zeros of V (if JOBV = 'I') or of
C conj(V) (if JOBV = 'R') are not distinct from
C the poles of G1sr (see METHOD);
C = 15: the solution of the Sylvester equation failed
C because the zeros of W (if JOBW = 'I') or of
C conj(W) (if JOBW = 'R') are not distinct from
C the poles of G1sr (see METHOD);
C = 16: the solution of the generalized Sylvester system
C failed because the zeros of V (if JOBV = 'I') or
C of conj(V) (if JOBV = 'R') are not distinct from
C the poles of G1sr (see METHOD);
C = 17: the solution of the generalized Sylvester system
C failed because the zeros of W (if JOBW = 'I') or
C of conj(W) (if JOBW = 'R') are not distinct from
C the poles of G1sr (see METHOD);
C = 18: op(V) is not antistable;
C = 19: op(W) is not antistable;
C = 20: V is not invertible;
C = 21: W is not invertible.
C
C METHOD
C
C Let G be the transfer-function matrix of the original
C linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) + Du(t), (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09JD determines
C the matrices of a reduced order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) + Dr*u(t), (2)
C
C such that the corresponding transfer-function matrix Gr minimizes
C the Hankel-norm of the frequency-weighted error
C
C op(V)*(G-Gr)*op(W). (3)
C
C For minimizing (3) with op(V) = V and op(W) = W, V and W are
C assumed to have poles distinct from those of G, while with
C op(V) = conj(V) and op(W) = conj(W), conj(V) and conj(W) are
C assumed to have poles distinct from those of G. For minimizing (3)
C with op(V) = inv(V) and op(W) = inv(W), V and W are assumed to
C have zeros distinct from the poles of G, while with
C op(V) = conj(inv(V)) and op(W) = conj(inv(W)), conj(V) and conj(W)
C are assumed to have zeros distinct from the poles of G.
C
C Note: conj(G) = G'(-s) for a continuous-time system and
C conj(G) = G'(1/z) for a discrete-time system.
C
C The following procedure is used to reduce G (see [1]):
C
C 1) Decompose additively G as
C
C G = G1 + G2,
C
C such that G1 = (A1,B1,C1,D) has only ALPHA-stable poles and
C G2 = (A2,B2,C2,0) has only ALPHA-unstable poles.
C
C 2) Compute G1s, the projection of op(V)*G1*op(W) containing the
C poles of G1, using explicit formulas [4] or the inverse-free
C descriptor system formulas of [5].
C
C 3) Determine G1sr, the optimal Hankel-norm approximation of G1s,
C of order r.
C
C 4) Compute G1r, the projection of inv(op(V))*G1sr*inv(op(W))
C containing the poles of G1sr, using explicit formulas [4]
C or the inverse-free descriptor system formulas of [5].
C
C 5) Assemble the reduced model Gr as
C
C Gr = G1r + G2.
C
C To reduce the weighted ALPHA-stable part G1s at step 3, the
C optimal Hankel-norm approximation method of [2], based on the
C square-root balancing projection formulas of [3], is employed.
C
C The optimal weighted approximation error satisfies
C
C HNORM[op(V)*(G-Gr)*op(W)] >= S(r+1),
C
C where S(r+1) is the (r+1)-th Hankel singular value of G1s, the
C transfer-function matrix computed at step 2 of the above
C procedure, and HNORM(.) denotes the Hankel-norm.
C
C REFERENCES
C
C [1] Latham, G.A. and Anderson, B.D.O.
C Frequency-weighted optimal Hankel-norm approximation of stable
C transfer functions.
C Systems & Control Letters, Vol. 5, pp. 229-236, 1985.
C
C [2] Glover, K.
C All optimal Hankel norm approximation of linear
C multivariable systems and their L-infinity error bounds.
C Int. J. Control, Vol. 36, pp. 1145-1193, 1984.
C
C [3] Tombs, M.S. and Postlethwaite, I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C [4] Varga, A.
C Explicit formulas for an efficient implementation
C of the frequency-weighting model reduction approach.
C Proc. 1993 European Control Conference, Groningen, NL,
C pp. 693-696, 1993.
C
C [5] Varga, A.
C Efficient and numerically reliable implementation of the
C frequency-weighted Hankel-norm approximation model reduction
C approach.
C Proc. 2001 ECC, Porto, Portugal, 2001.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on an accuracy enhancing square-root
C technique.
C
C CONTRIBUTORS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, March 2001.
C D. Sima, University of Bucharest, April 2001.
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2001.
C
C REVISIONS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, May 2001.
C V. Sima, Research Institute for Informatics, Bucharest, June 2001,
C March 2005.
C
C KEYWORDS
C
C Frequency weighting, model reduction, multivariable system,
C state-space model, state-space representation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION C100, ONE, P0001, ZERO
PARAMETER ( C100 = 100.0D0, ONE = 1.0D0, P0001 = 0.0001D0,
$ ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOBINV, JOBV, JOBW, ORDSEL
INTEGER INFO, IWARN, LDA, LDAV, LDAW, LDB, LDBV, LDBW,
$ LDC, LDCV, LDCW, LDD, LDDV, LDDW, LDWORK, M, N,
$ NR, NS, NV, NW, P
DOUBLE PRECISION ALPHA, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), AV(LDAV,*), AW(LDAW,*),
$ B(LDB,*), BV(LDBV,*), BW(LDBW,*),
$ C(LDC,*), CV(LDCV,*), CW(LDCW,*),
$ D(LDD,*), DV(LDDV,*), DW(LDDW,*), DWORK(*),
$ HSV(*)
C .. Local Scalars ..
CHARACTER JOBVL, JOBWL
LOGICAL AUTOM, CONJV, CONJW, DISCR, FIXORD, FRWGHT,
$ INVFR, LEFTI, LEFTW, RIGHTI, RIGHTW
INTEGER IERR, IWARNL, KAV, KAW, KBV, KBW, KCV, KCW, KDV,
$ KDW, KEV, KEW, KI, KL, KU, KW, LDABV, LDABW,
$ LDCDV, LDCDW, LW, NRA, NU, NU1, NVP, NWM, RANK
DOUBLE PRECISION ALPWRK, MAXRED, RCOND, SQREPS, TOL, WRKOPT
C .. Local Arrays ..
DOUBLE PRECISION TEMP(1)
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL AB07ND, AB08MD, AB09CX, AB09JV, AB09JW, AG07BD,
$ DLACPY, TB01ID, TB01KD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
FIXORD = LSAME( ORDSEL, 'F' )
LEFTI = LSAME( JOBV, 'I' ) .OR. LSAME( JOBV, 'R' )
LEFTW = LSAME( JOBV, 'V' ) .OR. LSAME( JOBV, 'C' ) .OR. LEFTI
CONJV = LSAME( JOBV, 'C' ) .OR. LSAME( JOBV, 'R' )
RIGHTI = LSAME( JOBW, 'I' ) .OR. LSAME( JOBW, 'R' )
RIGHTW = LSAME( JOBW, 'W' ) .OR. LSAME( JOBW, 'C' ) .OR. RIGHTI
CONJW = LSAME( JOBW, 'C' ) .OR. LSAME( JOBW, 'R' )
FRWGHT = LEFTW .OR. RIGHTW
INVFR = LSAME( JOBINV, 'N' )
AUTOM = LSAME( JOBINV, 'A' )
C
LW = 1
IF( LEFTW ) THEN
NVP = NV + P
LW = MAX( LW, 2*NVP*( NVP + P ) + P*P +
$ MAX( 2*NVP*NVP + MAX( 11*NVP + 16, P*NVP ),
$ NVP*N + MAX( NVP*N+N*N, P*N, P*M ) ) )
END IF
IF( RIGHTW ) THEN
NWM = NW + M
LW = MAX( LW, 2*NWM*( NWM + M ) + M*M +
$ MAX( 2*NWM*NWM + MAX( 11*NWM + 16, M*NWM ),
$ NWM*N + MAX( NWM*N+N*N, M*N, P*M ) ) )
END IF
LW = MAX( LW, N*( 2*N + MAX( N, M, P ) + 5 ) + ( N*( N + 1 ) )/2 )
LW = MAX( LW, N*( M + P + 2 ) + 2*M*P + MIN( N, M ) +
$ MAX ( 3*M + 1, MIN( N, M ) + P ) )
C
C Check the input scalar arguments.
C
IF( .NOT. ( LSAME( JOBV, 'N' ) .OR. LEFTW ) ) THEN
INFO = -1
ELSE IF( .NOT. ( LSAME( JOBW, 'N' ) .OR. RIGHTW ) ) THEN
INFO = -2
ELSE IF( .NOT. ( INVFR .OR. AUTOM .OR. LSAME( JOBINV, 'I' ) ) )
$ THEN
INFO = -3
ELSE IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -4
ELSE IF( .NOT. ( LSAME( EQUIL, 'S' ) .OR.
$ LSAME( EQUIL, 'N' ) ) ) THEN
INFO = -5
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -6
ELSE IF( N.LT.0 ) THEN
INFO = -7
ELSE IF( NV.LT.0 ) THEN
INFO = -8
ELSE IF( NW.LT.0 ) THEN
INFO = -9
ELSE IF( M.LT.0 ) THEN
INFO = -10
ELSE IF( P.LT.0 ) THEN
INFO = -11
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -12
ELSE IF( ( DISCR .AND. ( ALPHA.LT.ZERO .OR. ALPHA.GT.ONE ) ) .OR.
$ ( .NOT.DISCR .AND. ALPHA.GT.ZERO ) ) THEN
INFO = -13
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -15
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -17
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -19
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -21
ELSE IF( LDAV.LT.1 .OR. ( LEFTW .AND. LDAV.LT.NV ) ) THEN
INFO = -23
ELSE IF( LDBV.LT.1 .OR. ( LEFTW .AND. LDBV.LT.NV ) ) THEN
INFO = -25
ELSE IF( LDCV.LT.1 .OR. ( LEFTW .AND. LDCV.LT.P ) ) THEN
INFO = -27
ELSE IF( LDDV.LT.1 .OR. ( LEFTW .AND. LDDV.LT.P ) ) THEN
INFO = -29
ELSE IF( LDAW.LT.1 .OR. ( RIGHTW .AND. LDAW.LT.NW ) ) THEN
INFO = -31
ELSE IF( LDBW.LT.1 .OR. ( RIGHTW .AND. LDBW.LT.NW ) ) THEN
INFO = -33
ELSE IF( LDCW.LT.1 .OR. ( RIGHTW .AND. LDCW.LT.M ) ) THEN
INFO = -35
ELSE IF( LDDW.LT.1 .OR. ( RIGHTW .AND. LDDW.LT.M ) ) THEN
INFO = -37
ELSE IF( TOL1.GE.ONE ) THEN
INFO = -40
ELSE IF( ( TOL2.GT.ZERO .AND. .NOT.FIXORD .AND. TOL2.GT.TOL1 )
$ .OR. TOL2.GE.ONE ) THEN
INFO = -41
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -44
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09JD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
NR = 0
NS = 0
DWORK(1) = ONE
RETURN
END IF
C
IF( LSAME( EQUIL, 'S' ) ) THEN
C
C Scale simultaneously the matrices A, B and C:
C A <- inv(D)*A*D, B <- inv(D)*B and C <- C*D, where D is a
C diagonal matrix.
C Workspace: N.
C
MAXRED = C100
CALL TB01ID( 'All', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
$ DWORK, INFO )
END IF
C
C Correct the value of ALPHA to ensure stability.
C
ALPWRK = ALPHA
SQREPS = SQRT( DLAMCH( 'E' ) )
IF( DISCR ) THEN
IF( ALPHA.EQ.ONE ) ALPWRK = ONE - SQREPS
ELSE
IF( ALPHA.EQ.ZERO ) ALPWRK = -SQREPS
END IF
C
C Allocate working storage.
C
KU = 1
KL = KU + N*N
KI = KL + N
KW = KI + N
C
C Compute an additive decomposition G = G1 + G2, where G1
C is the ALPHA-stable projection of G.
C
C Reduce A to a block-diagonal real Schur form, with the NU-th order
C ALPHA-unstable part in the leading diagonal position, using a
C non-orthogonal similarity transformation A <- inv(T)*A*T and
C apply the transformation to B and C: B <- inv(T)*B and C <- C*T.
C
C Workspace needed: N*(N+2);
C Additional workspace: need 3*N;
C prefer larger.
C
CALL TB01KD( DICO, 'Unstable', 'General', N, M, P, ALPWRK, A, LDA,
$ B, LDB, C, LDC, NU, DWORK(KU), N, DWORK(KL),
$ DWORK(KI), DWORK(KW), LDWORK-KW+1, IERR )
C
IF( IERR.NE.0 ) THEN
IF( IERR.NE.3 ) THEN
INFO = 1
ELSE
INFO = 2
END IF
RETURN
END IF
C
WRKOPT = DWORK(KW) + DBLE( KW-1 )
IWARNL = 0
C
NS = N - NU
IF( FIXORD ) THEN
NRA = MAX( 0, NR-NU )
IF( NR.LT.NU )
$ IWARNL = 2
ELSE
NRA = 0
END IF
C
C Finish if only unstable part is present.
C
IF( NS.EQ.0 ) THEN
NR = NU
DWORK(1) = WRKOPT
RETURN
END IF
C
NU1 = NU + 1
IF( CONJV ) THEN
JOBVL = 'C'
ELSE
JOBVL = 'V'
END IF
IF( CONJW ) THEN
JOBWL = 'C'
ELSE
JOBWL = 'W'
END IF
IF( LEFTW ) THEN
C
C Check if V is invertible.
C Real workspace: need (NV+P)**2 + MAX( P + MAX(3*P,NV),
C MIN(P+1,NV) + MAX(3*(P+1),NV+P) );
C prefer larger.
C Integer workspace: need 2*NV+P+2.
C
TOL = ZERO
CALL AB08MD( 'S', NV, P, P, AV, LDAV, BV, LDBV, CV, LDCV,
$ DV, LDDV, RANK, TOL, IWORK, DWORK, LDWORK,
$ IERR )
IF( RANK.NE.P ) THEN
INFO = 20
RETURN
END IF
WRKOPT = MAX( WRKOPT, DWORK(1) )
C
IF( LEFTI ) THEN
IF( INVFR ) THEN
IERR = 1
ELSE
C
C Allocate storage for a standard inverse of V.
C Workspace: need NV*(NV+2*P) + P*P.
C
KAV = 1
KBV = KAV + NV*NV
KCV = KBV + NV*P
KDV = KCV + P*NV
KW = KDV + P*P
C
LDABV = MAX( NV, 1 )
LDCDV = P
CALL DLACPY( 'Full', NV, NV, AV, LDAV,
$ DWORK(KAV), LDABV )
CALL DLACPY( 'Full', NV, P, BV, LDBV,
$ DWORK(KBV), LDABV )
CALL DLACPY( 'Full', P, NV, CV, LDCV,
$ DWORK(KCV), LDCDV )
CALL DLACPY( 'Full', P, P, DV, LDDV,
$ DWORK(KDV), LDCDV )
C
C Compute the standard inverse of V.
C Additional real workspace: need MAX(1,4*P);
C prefer larger.
C Integer workspace: need 2*P.
C
CALL AB07ND( NV, P, DWORK(KAV), LDABV, DWORK(KBV), LDABV,
$ DWORK(KCV), LDCDV, DWORK(KDV), LDCDV,
$ RCOND, IWORK, DWORK(KW), LDWORK-KW+1, IERR )
WRKOPT = MAX( WRKOPT, DWORK(KW) + DBLE( KW-1 ) )
C
C Check if inversion is accurate.
C
IF( AUTOM ) THEN
IF( IERR.EQ.0 .AND. RCOND.LE.P0001 ) IERR = 1
ELSE
IF( IERR.EQ.0 .AND. RCOND.LE.SQREPS ) IERR = 1
END IF
IF( IERR.NE.0 .AND. NV.EQ.0 ) THEN
INFO = 20
RETURN
END IF
END IF
C
IF( IERR.NE.0 ) THEN
C
C Allocate storage for a descriptor inverse of V.
C
KAV = 1
KEV = KAV + NVP*NVP
KBV = KEV + NVP*NVP
KCV = KBV + NVP*P
KDV = KCV + P*NVP
KW = KDV + P*P
C
LDABV = MAX( NVP, 1 )
LDCDV = P
C
C DV is singular or ill-conditioned.
C Form a descriptor inverse of V.
C Workspace: need 2*(NV+P)*(NV+2*P) + P*P.
C
CALL AG07BD( 'I', NV, P, AV, LDAV, TEMP, 1, BV, LDBV,
$ CV, LDCV, DV, LDDV, DWORK(KAV), LDABV,
$ DWORK(KEV), LDABV, DWORK(KBV), LDABV,
$ DWORK(KCV), LDCDV, DWORK(KDV), LDCDV, IERR )
C
C Compute the projection containing the poles of weighted
C reduced ALPHA-stable part using descriptor inverse of V
C of order NVP = NV + P.
C Additional real workspace: need
C MAX( 2*NVP*NVP + MAX( 11*NVP+16, P*NVP ),
C NVP*N + MAX( NVP*N+N*N, P*N, P*M ) );
C prefer larger.
C Integer workspace: need NVP+N+6.
C
CALL AB09JV( JOBVL, DICO, 'G', 'C', NS, M, P, NVP, P,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD,
$ DWORK(KAV), LDABV, DWORK(KEV), LDABV,
$ DWORK(KBV), LDABV, DWORK(KCV), LDCDV,
$ DWORK(KDV), LDCDV, IWORK, DWORK(KW),
$ LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 5
ELSE IF( IERR.EQ.2 ) THEN
INFO = 16
ELSE IF( IERR.EQ.4 ) THEN
INFO = 18
END IF
RETURN
END IF
ELSE
C
C Compute the projection containing the poles of weighted
C reduced ALPHA-stable part using explicit inverse of V.
C Additional real workspace: need
C MAX( NV*(NV+5), NV*N + MAX( a, P*N, P*M ) )
C a = 0, if DICO = 'C' or JOBVL = 'V',
C a = 2*NV, if DICO = 'D' and JOBVL = 'C';
C prefer larger.
C
CALL AB09JV( JOBVL, DICO, 'I', 'C', NS, M, P, NV, P,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, DWORK(KAV), LDABV,
$ TEMP, 1, DWORK(KBV), LDABV,
$ DWORK(KCV), LDCDV, DWORK(KDV), LDCDV, IWORK,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 10
ELSE IF( IERR.EQ.3 ) THEN
INFO = 14
ELSE IF( IERR.EQ.4 ) THEN
INFO = 18
END IF
RETURN
END IF
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(KW) + DBLE( KW - 1 ) )
ELSE
C
C Compute the projection of V*G1 or conj(V)*G1 containing the
C poles of G.
C
C Workspace need:
C real MAX( 1, NV*(NV+5), NV*N + MAX( a, P*N, P*M ) )
C a = 0, if DICO = 'C' or JOBVL = 'V',
C a = 2*NV, if DICO = 'D' and JOBVL = 'C';
C prefer larger.
C
CALL AB09JV( JOBVL, DICO, 'I', 'C', NS, M, P, NV, P,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, AV, LDAV,
$ TEMP, 1, BV, LDBV, CV, LDCV, DV, LDDV, IWORK,
$ DWORK, LDWORK, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 3
ELSE IF( IERR.EQ.3 ) THEN
INFO = 12
ELSE IF( IERR.EQ.4 ) THEN
INFO = 18
END IF
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(1) )
END IF
END IF
C
IF( RIGHTW ) THEN
C
C Check if W is invertible.
C Real workspace: need (NW+M)**2 + MAX( M + MAX(3*M,NW),
C MIN(M+1,NW) + MAX(3*(M+1),NW+M) );
C prefer larger.
C Integer workspace: need 2*NW+M+2.
C
TOL = ZERO
CALL AB08MD( 'S', NW, M, M, AW, LDAW, BW, LDBW, CW, LDCW,
$ DW, LDDW, RANK, TOL, IWORK, DWORK, LDWORK,
$ IERR )
IF( RANK.NE.M ) THEN
INFO = 21
RETURN
END IF
WRKOPT = MAX( WRKOPT, DWORK(1) )
C
IF( RIGHTI ) THEN
IF( INVFR ) THEN
IERR = 1
ELSE
C
C Allocate storage for a standard inverse of W.
C Workspace: need NW*(NW+2*M) + M*M.
C
KAW = 1
KBW = KAW + NW*NW
KCW = KBW + NW*M
KDW = KCW + M*NW
KW = KDW + M*M
C
LDABW = MAX( NW, 1 )
LDCDW = M
CALL DLACPY( 'Full', NW, NW, AW, LDAW,
$ DWORK(KAW), LDABW )
CALL DLACPY( 'Full', NW, M, BW, LDBW,
$ DWORK(KBW), LDABW )
CALL DLACPY( 'Full', M, NW, CW, LDCW,
$ DWORK(KCW), LDCDW )
CALL DLACPY( 'Full', M, M, DW, LDDW,
$ DWORK(KDW), LDCDW )
C
C Compute the standard inverse of W.
C Additional real workspace: need MAX(1,4*M);
C prefer larger.
C Integer workspace: need 2*M.
C
CALL AB07ND( NW, M, DWORK(KAW), LDABW, DWORK(KBW), LDABW,
$ DWORK(KCW), LDCDW, DWORK(KDW), LDCDW,
$ RCOND, IWORK, DWORK(KW), LDWORK-KW+1, IERR )
WRKOPT = MAX( WRKOPT, DWORK(KW) + DBLE( KW-1 ) )
C
C Check if inversion is accurate.
C
IF( AUTOM ) THEN
IF( IERR.EQ.0 .AND. RCOND.LE.P0001 ) IERR = 1
ELSE
IF( IERR.EQ.0 .AND. RCOND.LE.SQREPS ) IERR = 1
END IF
IF( IERR.NE.0 .AND. NW.EQ.0 ) THEN
INFO = 21
RETURN
END IF
END IF
C
IF( IERR.NE.0 ) THEN
C
C Allocate storage for a descriptor inverse of W.
C
KAW = 1
KEW = KAW + NWM*NWM
KBW = KEW + NWM*NWM
KCW = KBW + NWM*M
KDW = KCW + M*NWM
KW = KDW + M*M
C
LDABW = MAX( NWM, 1 )
LDCDW = M
C
C DW is singular or ill-conditioned.
C Form the descriptor inverse of W.
C Workspace: need 2*(NW+M)*(NW+2*M) + M*M.
C
CALL AG07BD( 'I', NW, M, AW, LDAW, TEMP, 1, BW, LDBW,
$ CW, LDCW, DW, LDDW, DWORK(KAW), LDABW,
$ DWORK(KEW), LDABW, DWORK(KBW), LDABW,
$ DWORK(KCW), LDCDW, DWORK(KDW), LDCDW, IERR )
C
C Compute the projection containing the poles of weighted
C reduced ALPHA-stable part using descriptor inverse of W
C of order NWM = NW + M.
C Additional real workspace: need
C MAX( 2*NWM*NWM + MAX( 11*NWM+16, M*NWM ),
C NWM*N + MAX( NWM*N+N*N, M*N, P*M ) );
C prefer larger.
C Integer workspace: need NWM+N+6.
C
CALL AB09JW( JOBWL, DICO, 'G', 'C', NS, M, P, NWM, M,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, DWORK(KAW), LDABW,
$ DWORK(KEW), LDABW, DWORK(KBW), LDABW,
$ DWORK(KCW), LDCDW, DWORK(KDW), LDCDW,
$ IWORK, DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 6
ELSE IF( IERR.EQ.2 ) THEN
INFO = 17
ELSE IF( IERR.EQ.4 ) THEN
INFO = 19
END IF
RETURN
END IF
ELSE
C
C Compute the projection containing the poles of weighted
C reduced ALPHA-stable part using explicit inverse of W.
C Additional real workspace: need
C MAX( NW*(NW+5), NW*N + MAX( a, M*N, P*M ) )
C a = 0, if DICO = 'C' or JOBWL = 'W',
C a = 2*NW, if DICO = 'D' and JOBWL = 'C';
C prefer larger.
C
CALL AB09JW( JOBWL, DICO, 'I', 'C', NS, M, P, NW, M,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, DWORK(KAW), LDABW,
$ TEMP, 1, DWORK(KBW), LDABW,
$ DWORK(KCW), LDCDW, DWORK(KDW), LDCDW,
$ IWORK, DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 11
ELSE IF( IERR.EQ.3 ) THEN
INFO = 15
ELSE IF( IERR.EQ.4 ) THEN
INFO = 19
END IF
RETURN
END IF
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(KW) + DBLE( KW - 1 ) )
ELSE
C
C Compute the projection G1s of V*G1*W or conj(V)*G1*conj(W)
C containing the poles of G.
C
C Workspace need:
C real MAX( 1, NW*(NW+5), NW*N + MAX( b, M*N, P*M ) )
C b = 0, if DICO = 'C' or JOBWL = 'W',
C b = 2*NW, if DICO = 'D' and JOBWL = 'C';
C prefer larger.
C
CALL AB09JW( JOBWL, DICO, 'I', 'C', NS, M, P, NW, M,
$ A(NU1,NU1), LDA, B(NU1,1), LDB, C(1,NU1), LDC,
$ D, LDD, AW, LDAW, TEMP, 1, BW, LDBW, CW, LDCW,
$ DW, LDDW, IWORK, DWORK, LDWORK, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 4
ELSE IF( IERR.EQ.3 ) THEN
INFO = 13
ELSE IF( IERR.EQ.4 ) THEN
INFO = 19
END IF
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(1) )
END IF
END IF
C
C Determine a reduced order approximation G1sr of G1s using the
C Hankel-norm approximation method. The resulting A(NU1:N,NU1:N)
C is further in a real Schur form.
C
C Workspace: need MAX( LDW3, LDW4 ),
C LDW3 = N*(2*N + MAX(N,M,P) + 5) + N*(N+1)/2,
C LDW4 = N*(M+P+2) + 2*M*P + MIN(N,M) +
C MAX( 3*M+1, MIN(N,M)+P );
C prefer larger.
C
CALL AB09CX( DICO, ORDSEL, NS, M, P, NRA, A(NU1,NU1), LDA,
$ B(NU1,1), LDB, C(1,NU1), LDC, D, LDD, HSV, TOL1,
$ TOL2, IWORK, DWORK, LDWORK, IWARN, IERR )
C
IF( IERR.NE.0 ) THEN
C
C Set INFO = 7, 8 or 9.
C
INFO = IERR + 5
RETURN
END IF
C
IWARN = MAX( IWARNL, IWARN )
WRKOPT = MAX( WRKOPT, DWORK(1) )
C
IF( LEFTW ) THEN
IF( .NOT.LEFTI ) THEN
IF( INVFR ) THEN
IERR = 1
ELSE
C
C Allocate storage for a standard inverse of V.
C Workspace: need NV*(NV+2*P) + P*P.
C
KAV = 1
KBV = KAV + NV*NV
KCV = KBV + NV*P
KDV = KCV + P*NV
KW = KDV + P*P
C
LDABV = MAX( NV, 1 )
LDCDV = P
CALL DLACPY( 'Full', NV, NV, AV, LDAV,
$ DWORK(KAV), LDABV )
CALL DLACPY( 'Full', NV, P, BV, LDBV,
$ DWORK(KBV), LDABV )
CALL DLACPY( 'Full', P, NV, CV, LDCV,
$ DWORK(KCV), LDCDV )
CALL DLACPY( 'Full', P, P, DV, LDDV,
$ DWORK(KDV), LDCDV )
C
C Compute the standard inverse of V.
C Additional real workspace: need MAX(1,4*P);
C prefer larger.
C Integer workspace: need 2*P.
C
CALL AB07ND( NV, P, DWORK(KAV), LDABV, DWORK(KBV), LDABV,
$ DWORK(KCV), LDCDV, DWORK(KDV), LDCDV,
$ RCOND, IWORK, DWORK(KW), LDWORK-KW+1, IERR )
WRKOPT = MAX( WRKOPT, DWORK(KW) + DBLE( KW-1 ) )
C
C Check if inversion is accurate.
C
IF( AUTOM ) THEN
IF( IERR.EQ.0 .AND. RCOND.LE.P0001 ) IERR = 1
ELSE
IF( IERR.EQ.0 .AND. RCOND.LE.SQREPS ) IERR = 1
END IF
IF( IERR.NE.0 .AND. NV.EQ.0 ) THEN
INFO = 20
RETURN
END IF
END IF
C
IF( IERR.NE.0 ) THEN
C
C Allocate storage for a descriptor inverse of V.
C
KAV = 1
KEV = KAV + NVP*NVP
KBV = KEV + NVP*NVP
KCV = KBV + NVP*P
KDV = KCV + P*NVP
KW = KDV + P*P
C
LDABV = MAX( NVP, 1 )
LDCDV = P
C
C DV is singular or ill-conditioned.
C Form a descriptor inverse of V.
C Workspace: need 2*(NV+P)*(NV+2*P) + P*P.
C
CALL AG07BD( 'I', NV, P, AV, LDAV, TEMP, 1, BV, LDBV,
$ CV, LDCV, DV, LDDV, DWORK(KAV), LDABV,
$ DWORK(KEV), LDABV, DWORK(KBV), LDABV,
$ DWORK(KCV), LDCDV, DWORK(KDV), LDCDV, IERR )
C
C Compute the projection containing the poles of weighted
C reduced ALPHA-stable part using descriptor inverse of V
C of order NVP = NV + P.
C Additional real workspace: need
C MAX( 2*NVP*NVP + MAX( 11*NVP+16, P*NVP ),
C NVP*N + MAX( NVP*N+N*N, P*N, P*M ) );
C prefer larger.
C Integer workspace: need NVP+N+6.
C
CALL AB09JV( JOBVL, DICO, 'G', 'N', NRA, M, P, NVP, P,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD,
$ DWORK(KAV), LDABV, DWORK(KEV), LDABV,
$ DWORK(KBV), LDABV, DWORK(KCV), LDCDV,
$ DWORK(KDV), LDCDV, IWORK, DWORK(KW),
$ LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 5
ELSE IF( IERR.EQ.2 ) THEN
INFO = 16
END IF
RETURN
END IF
ELSE
C
C Compute the projection containing the poles of weighted
C reduced ALPHA-stable part using explicit inverse of V.
C Additional real workspace: need
C MAX( NV*(NV+5), NV*N + MAX( a, P*N, P*M ) )
C a = 0, if DICO = 'C' or JOBVL = 'V',
C a = 2*NV, if DICO = 'D' and JOBVL = 'C';
C prefer larger.
C
CALL AB09JV( JOBVL, DICO, 'I', 'N', NRA, M, P, NV, P,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, DWORK(KAV), LDABV,
$ TEMP, 1, DWORK(KBV), LDABV,
$ DWORK(KCV), LDCDV, DWORK(KDV), LDCDV, IWORK,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 10
ELSE IF( IERR.EQ.3 ) THEN
INFO = 14
END IF
RETURN
END IF
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(KW) + DBLE( KW - 1 ) )
ELSE
C
C Compute the projection of V*G1sr or conj(V)*G1sr containing
C the poles of G.
C
C Workspace need:
C real MAX( 1, NV*(NV+5), NV*N + MAX( a, P*N, P*M ) )
C a = 0, if DICO = 'C' or JOBVL = 'V',
C a = 2*NV, if DICO = 'D' and JOBVL = 'C';
C prefer larger.
C
CALL AB09JV( JOBVL, DICO, 'I', 'N', NRA, M, P, NV, P,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, AV, LDAV,
$ TEMP, 1, BV, LDBV, CV, LDCV, DV, LDDV, IWORK,
$ DWORK, LDWORK, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 3
ELSE IF( IERR.EQ.3 ) THEN
INFO = 12
END IF
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(1) )
END IF
END IF
C
IF( RIGHTW ) THEN
IF( .NOT.RIGHTI ) THEN
IF( INVFR ) THEN
IERR = 1
ELSE
C
C Allocate storage for a standard inverse of W.
C Workspace: need NW*(NW+2*M) + M*M.
C
KAW = 1
KBW = KAW + NW*NW
KCW = KBW + NW*M
KDW = KCW + M*NW
KW = KDW + M*M
C
LDABW = MAX( NW, 1 )
LDCDW = M
CALL DLACPY( 'Full', NW, NW, AW, LDAW,
$ DWORK(KAW), LDABW )
CALL DLACPY( 'Full', NW, M, BW, LDBW,
$ DWORK(KBW), LDABW )
CALL DLACPY( 'Full', M, NW, CW, LDCW,
$ DWORK(KCW), LDCDW )
CALL DLACPY( 'Full', M, M, DW, LDDW,
$ DWORK(KDW), LDCDW )
C
C Compute the standard inverse of W.
C Additional real workspace: need MAX(1,4*M);
C prefer larger.
C Integer workspace: need 2*M.
C
CALL AB07ND( NW, M, DWORK(KAW), LDABW, DWORK(KBW), LDABW,
$ DWORK(KCW), LDCDW, DWORK(KDW), LDCDW,
$ RCOND, IWORK, DWORK(KW), LDWORK-KW+1, IERR )
WRKOPT = MAX( WRKOPT, DWORK(KW) + DBLE( KW-1 ) )
C
C Check if inversion is accurate.
C
IF( AUTOM ) THEN
IF( IERR.EQ.0 .AND. RCOND.LE.P0001 ) IERR = 1
ELSE
IF( IERR.EQ.0 .AND. RCOND.LE.SQREPS ) IERR = 1
END IF
IF( IERR.NE.0 .AND. NW.EQ.0 ) THEN
INFO = 21
RETURN
END IF
END IF
C
IF( IERR.NE.0 ) THEN
C
C Allocate storage for a descriptor inverse of W.
C
KAW = 1
KEW = KAW + NWM*NWM
KBW = KEW + NWM*NWM
KCW = KBW + NWM*M
KDW = KCW + M*NWM
KW = KDW + M*M
C
LDABW = MAX( NWM, 1 )
LDCDW = M
C
C DW is singular or ill-conditioned.
C Form the descriptor inverse of W.
C Workspace: need 2*(NW+M)*(NW+2*M) + M*M.
C
CALL AG07BD( 'I', NW, M, AW, LDAW, TEMP, 1, BW, LDBW,
$ CW, LDCW, DW, LDDW, DWORK(KAW), LDABW,
$ DWORK(KEW), LDABW, DWORK(KBW), LDABW,
$ DWORK(KCW), LDCDW, DWORK(KDW), LDCDW, IERR )
C
C Compute the projection containing the poles of weighted
C reduced ALPHA-stable part using descriptor inverse of W
C of order NWM = NW + M.
C Additional real workspace: need
C MAX( 2*NWM*NWM + MAX( 11*NWM+16, M*NWM ),
C NWM*N + MAX( NWM*N+N*N, M*N, P*M ) );
C prefer larger.
C Integer workspace: need NWM+N+6.
C
CALL AB09JW( JOBWL, DICO, 'G', 'N', NRA, M, P, NWM, M,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, DWORK(KAW), LDABW,
$ DWORK(KEW), LDABW, DWORK(KBW), LDABW,
$ DWORK(KCW), LDCDW, DWORK(KDW), LDCDW,
$ IWORK, DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 6
ELSE IF( IERR.EQ.2 ) THEN
INFO = 17
END IF
RETURN
END IF
ELSE
C
C Compute the projection containing the poles of weighted
C reduced ALPHA-stable part using explicit inverse of W.
C Additional real workspace: need
C MAX( NW*(NW+5), NW*N + MAX( a, M*N, P*M ) )
C a = 0, if DICO = 'C' or JOBWL = 'W',
C a = 2*NW, if DICO = 'D' and JOBWL = 'C';
C prefer larger.
C
CALL AB09JW( JOBWL, DICO, 'I', 'N', NRA, M, P, NW, M,
$ A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, DWORK(KAW), LDABW,
$ TEMP, 1, DWORK(KBW), LDABW,
$ DWORK(KCW), LDCDW, DWORK(KDW), LDCDW,
$ IWORK, DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 11
ELSE IF( IERR.EQ.3 ) THEN
INFO = 15
END IF
RETURN
END IF
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(KW) + DBLE( KW - 1 ) )
ELSE
C
C Compute the projection G1r of V*G1sr*W or
C conj(V)*G1sr*conj(W) containing the poles of G.
C
C Workspace need:
C real MAX( 1, NW*(NW+5), NW*N + MAX( b, M*N, P*M ) )
C b = 0, if DICO = 'C' or JOBWL = 'W',
C b = 2*NW, if DICO = 'D' and JOBWL = 'C';
C prefer larger.
C
CALL AB09JW( JOBWL, DICO, 'I', 'N', NRA, M, P, NW, M,
$ A(NU1,NU1), LDA, B(NU1,1), LDB, C(1,NU1), LDC,
$ D, LDD, AW, LDAW, TEMP, 1, BW, LDBW, CW, LDCW,
$ DW, LDDW, IWORK, DWORK, LDWORK, IERR )
C
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.1 ) THEN
INFO = 4
ELSE IF( IERR.EQ.3 ) THEN
INFO = 13
END IF
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(1) )
END IF
END IF
C
NR = NRA + NU
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of AB09JD ***
END
|