File: AB09JX.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (253 lines) | stat: -rw-r--r-- 8,379 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
      SUBROUTINE AB09JX( DICO, STDOM, EVTYPE, N, ALPHA, ER, EI, ED,
     $                   TOLINF, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To check stability/antistability of finite eigenvalues with
C     respect to a given stability domain.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the stability domain as follows:
C             = 'C':  for a continuous-time system;
C             = 'D':  for a discrete-time system.
C
C     STDOM   CHARACTER*1
C             Specifies whether the domain of interest is of stability
C             type (left part of complex plane or inside of a circle)
C             or of instability type (right part of complex plane or
C             outside of a circle) as follows:
C             = 'S':  stability type domain;
C             = 'U':  instability type domain.
C
C     EVTYPE  CHARACTER*1
C             Specifies whether the eigenvalues arise from a standard
C             or a generalized eigenvalue problem as follows:
C             = 'S':  standard eigenvalue problem;
C             = 'G':  generalized eigenvalue problem;
C             = 'R':  reciprocal generalized eigenvalue problem.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The dimension of vectors ER, EI and ED.  N >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             Specifies the boundary of the domain of interest for the
C             eigenvalues. For a continuous-time system
C             (DICO = 'C'), ALPHA is the boundary value for the real
C             parts of eigenvalues, while for a discrete-time system
C             (DICO = 'D'), ALPHA >= 0 represents the boundary value for
C             the moduli of eigenvalues.
C
C     ER, EI, (input) DOUBLE PRECISION arrays, dimension (N)
C     ED      If EVTYPE = 'S', ER(j) + EI(j)*i, j = 1,...,N, are
C             the eigenvalues of a real matrix.
C             ED is not referenced and is implicitly considered as
C             a vector having all elements equal to one.
C             If EVTYPE = 'G' or EVTYPE = 'R', (ER(j) + EI(j)*i)/ED(j),
C             j = 1,...,N, are the generalized eigenvalues of a pair of
C             real matrices. If ED(j) is zero, then the j-th generalized
C             eigenvalue is infinite.
C             Complex conjugate pairs of eigenvalues must appear
C             consecutively.
C
C     Tolerances
C
C     TOLINF  DOUBLE PRECISION
C             If EVTYPE = 'G' or 'R', TOLINF contains the tolerance for
C             detecting infinite generalized eigenvalues.
C             0 <= TOLINF < 1.
C
C     Error Indicator
C
C     INFO    INTEGER
C             =  0:  successful exit, i.e., all eigenvalues lie within
C                    the domain of interest defined by DICO, STDOM
C                    and ALPHA;
C             <  0:  if INFO = -i, the i-th argument had an illegal
C                    value;
C             =  1:  some eigenvalues lie outside the domain of interest
C                    defined by DICO, STDOM and ALPHA.
C     METHOD
C
C     The domain of interest for an eigenvalue lambda is defined by the
C     parameters ALPHA, DICO and STDOM as follows:
C        - for a continuous-time system (DICO = 'C'):
C               Real(lambda) < ALPHA if STDOM = 'S';
C               Real(lambda) > ALPHA if STDOM = 'U';
C        - for a discrete-time system (DICO = 'D'):
C               Abs(lambda) < ALPHA if STDOM = 'S';
C               Abs(lambda) > ALPHA if STDOM = 'U'.
C     If EVTYPE = 'R', the same conditions apply for 1/lambda.
C
C     CONTRIBUTORS
C
C     A. Varga, German Aerospace Center, Oberpfaffenhofen, May 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, June 2001.
C
C     KEYWORDS
C
C     Stability.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION ZERO, ONE
      PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER        DICO, EVTYPE, STDOM
      INTEGER          INFO, N
      DOUBLE PRECISION ALPHA, TOLINF
C     .. Array Arguments ..
      DOUBLE PRECISION ED(*), EI(*), ER(*)
C     .. Local Scalars
      LOGICAL          DISCR, RECEVP, STAB, STDEVP
      DOUBLE PRECISION ABSEV, RPEV, SCALE
      INTEGER          I
C     .. External Functions ..
      LOGICAL          LSAME
      DOUBLE PRECISION DLAPY2
      EXTERNAL         DLAPY2, LSAME
C     .. External Subroutines ..
      EXTERNAL         XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC        ABS
C     .. Executable Statements ..
C
      INFO   = 0
      DISCR  = LSAME( DICO,   'D' )
      STAB   = LSAME( STDOM,  'S' )
      STDEVP = LSAME( EVTYPE, 'S' )
      RECEVP = LSAME( EVTYPE, 'R' )
C
C     Check the scalar input arguments.
C
      IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( STAB .OR. LSAME( STDOM, 'U' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT. ( STDEVP .OR. LSAME( EVTYPE, 'G' ) .OR.
     $                 RECEVP ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( DISCR .AND. ALPHA.LT.ZERO ) THEN
         INFO = -5
      ELSE IF( TOLINF.LT.ZERO .OR. TOLINF.GE.ONE ) THEN
         INFO = -9
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB09JX', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 )
     $   RETURN
C
      IF( STAB ) THEN
C
C        Check the stability of finite eigenvalues.
C
         SCALE = ONE
         IF( DISCR ) THEN
            DO 10 I = 1, N
               ABSEV = DLAPY2( ER(I), EI(I) )
               IF( RECEVP ) THEN
                  SCALE = ABSEV
                  ABSEV = ABS( ED(I) )
               ELSE IF( .NOT.STDEVP ) THEN
                  SCALE = ED(I)
               END IF
               IF( ABS( SCALE ).GT.TOLINF .AND.
     $            ABSEV.GE.ALPHA*SCALE ) THEN
                  INFO = 1
                  RETURN
               END IF
   10       CONTINUE
         ELSE
            DO 20 I = 1, N
               RPEV = ER(I)
               IF( RECEVP ) THEN
                  SCALE = RPEV
                  RPEV = ED(I)
               ELSE IF( .NOT.STDEVP ) THEN
                  SCALE = ED(I)
               END IF
               IF( ABS( SCALE ).GT.TOLINF .AND.
     $            RPEV.GE.ALPHA*SCALE ) THEN
                  INFO = 1
                  RETURN
               END IF
   20       CONTINUE
         END IF
      ELSE
C
C        Check the anti-stability of finite eigenvalues.
C
         IF( DISCR ) THEN
            DO 30 I = 1, N
               ABSEV = DLAPY2( ER(I), EI(I) )
               IF( RECEVP ) THEN
                  SCALE = ABSEV
                  ABSEV = ABS( ED(I) )
               ELSE IF( .NOT.STDEVP ) THEN
                  SCALE = ED(I)
               END IF
               IF( ABS( SCALE ).GT.TOLINF .AND.
     $            ABSEV.LE.ALPHA*SCALE ) THEN
                  INFO = 1
                  RETURN
               END IF
   30       CONTINUE
         ELSE
            DO 40 I = 1, N
               RPEV = ER(I)
               IF( RECEVP ) THEN
                  SCALE = RPEV
                  RPEV = ED(I)
               ELSE IF( .NOT.STDEVP ) THEN
                  SCALE = ED(I)
               END IF
               IF( ABS( SCALE ).GT.TOLINF .AND.
     $            RPEV.LE.ALPHA*SCALE ) THEN
                  INFO = 1
                  RETURN
               END IF
   40       CONTINUE
         END IF
      END IF
C
      RETURN
C *** Last line of AB09JX ***
      END