File: AB09KX.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (869 lines) | stat: -rw-r--r-- 32,117 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
      SUBROUTINE AB09KX( JOB, DICO, WEIGHT, N, NV, NW, M, P,
     $                   A,  LDA,  B,  LDB,  C,  LDC,  D,  LDD,
     $                   AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
     $                   AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
     $                   DWORK, LDWORK, IWARN, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To construct a state-space representation (A,BS,CS,DS) of the
C     stable projection of V*G*W or conj(V)*G*conj(W) from the
C     state-space representations (A,B,C,D), (AV,BV,CV,DV), and
C     (AW,BW,CW,DW) of the transfer-function matrices G, V and W,
C     respectively. G is assumed to be a stable transfer-function
C     matrix and the state matrix A must be in a real Schur form.
C     When computing the stable projection of V*G*W, V and W are assumed
C     to be completely unstable transfer-function matrices.
C     When computing the stable projection of conj(V)*G*conj(W),
C     V and W are assumed to be stable transfer-function matrices.
C
C     For a transfer-function matrix G, conj(G) denotes the conjugate
C     of G given by G'(-s) for a continuous-time system or G'(1/z)
C     for a discrete-time system.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies which projection to be computed as follows:
C             = 'N':  compute the stable projection of V*G*W;
C             = 'C':  compute the stable projection of
C                     conj(V)*G*conj(W).
C
C     DICO    CHARACTER*1
C             Specifies the type of the systems as follows:
C             = 'C':  G, V and W are continuous-time systems;
C             = 'D':  G, V and W are discrete-time systems.
C
C     WEIGHT  CHARACTER*1
C             Specifies the type of frequency weighting, as follows:
C             = 'N':  no weightings are used (V = I, W = I);
C             = 'L':  only left weighting V is used (W = I);
C             = 'R':  only right weighting W is used (V = I);
C             = 'B':  both left and right weightings V and W are used.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A. Also the number of rows of
C             the matrix B and the number of columns of the matrix C.
C             N represents the dimension of the state vector of the
C             system with the transfer-function matrix G.  N >= 0.
C
C     NV      (input) INTEGER
C             The order of the matrix AV. Also the number of rows of
C             the matrix BV and the number of columns of the matrix CV.
C             NV represents the dimension of the state vector of the
C             system with the transfer-function matrix V.  NV >= 0.
C
C     NW      (input) INTEGER
C             The order of the matrix AW. Also the number of rows of
C             the matrix BW and the number of columns of the matrix CW.
C             NW represents the dimension of the state vector of the
C             system with the transfer-function matrix W.  NW >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrices B, D, BW and DW
C             and number of rows of the matrices CW and DW.  M >= 0.
C             M represents the dimension of input vectors of the
C             systems with the transfer-function matrices G and W and
C             also the dimension of the output vector of the system
C             with the transfer-function matrix W.
C
C     P       (input) INTEGER
C             The number of rows of the matrices C, D, CV and DV and the
C             number of columns of the matrices BV and DV.  P >= 0.
C             P represents the dimension of output vectors of the
C             systems with the transfer-function matrices G and V and
C             also the dimension of the input vector of the system
C             with the transfer-function matrix V.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must
C             contain the state matrix A of the system with the
C             transfer-function matrix G in a real Schur form.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input matrix B of the system with the
C             transfer-function matrix G.
C             On exit, if INFO = 0, the leading N-by-M part of this
C             array contains the input matrix BS of the stable
C             projection of V*G*W if JOB = 'N', and of conj(V)*G*conj(W)
C             if JOB = 'C'.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the output matrix C of the system with the
C             transfer-function matrix G.
C             On exit, if INFO = 0, the leading P-by-N part of this
C             array contains the output matrix CS of the stable
C             projection of V*G*W if JOB = 'N', and of conj(V)*G*conj(W)
C             if JOB = 'C'.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the feedthrough matrix D of the system with the
C             transfer-function matrix G.
C             On exit, if INFO = 0, the leading P-by-M part of this
C             array contains the feedthrough matrix DS of the stable
C             projection of V*G*W if JOB = 'N', and of conj(V)*G*conj(W)
C             if JOB = 'C'.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= MAX(1,P).
C
C     AV      (input/output) DOUBLE PRECISION array, dimension (LDAV,NV)
C             On entry, if WEIGHT = 'L' or 'B', the leading NV-by-NV
C             part of this array must contain the state matrix AV of
C             the system with the transfer-function matrix V.
C             On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C             NV-by-NV part of this array contains a real Schur form
C             of AV.
C             AV is not referenced if WEIGHT = 'R' or 'N'.
C
C     LDAV    INTEGER
C             The leading dimension of the array AV.
C             LDAV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C             LDAV >= 1,         if WEIGHT = 'R' or 'N'.
C
C     BV      (input/output) DOUBLE PRECISION array, dimension (LDBV,P)
C             On entry, if WEIGHT = 'L' or 'B', the leading NV-by-P part
C             of this array must contain the input matrix BV of the
C             system with the transfer-function matrix V.
C             On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C             NV-by-P part of this array contains the transformed input
C             matrix BV.
C             BV is not referenced if WEIGHT = 'R' or 'N'.
C
C     LDBV    INTEGER
C             The leading dimension of the array BV.
C             LDBV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C             LDBV >= 1,         if WEIGHT = 'R' or 'N'.
C
C     CV      (input/output) DOUBLE PRECISION array, dimension (LDCV,NV)
C             On entry, if WEIGHT = 'L' or 'B', the leading P-by-NV part
C             of this array must contain the output matrix CV of the
C             system with the transfer-function matrix V.
C             On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C             P-by-NV part of this array contains the transformed output
C             matrix CV.
C             CV is not referenced if WEIGHT = 'R' or 'N'.
C
C     LDCV    INTEGER
C             The leading dimension of the array CV.
C             LDCV >= MAX(1,P), if WEIGHT = 'L' or 'B';
C             LDCV >= 1,        if WEIGHT = 'R' or 'N'.
C
C     DV      (input) DOUBLE PRECISION array, dimension (LDDV,P)
C             If WEIGHT = 'L' or 'B', the leading P-by-P part of this
C             array must contain the feedthrough matrix DV of the system
C             with the transfer-function matrix V.
C             DV is not referenced if WEIGHT = 'R' or 'N'.
C
C     LDDV    INTEGER
C             The leading dimension of the array DV.
C             LDDV >= MAX(1,P), if WEIGHT = 'L' or 'B';
C             LDDV >= 1,        if WEIGHT = 'R' or 'N'.
C
C     AW      (input/output) DOUBLE PRECISION array, dimension (LDAW,NW)
C             On entry, if WEIGHT = 'R' or 'B', the leading NW-by-NW
C             part of this array must contain the state matrix AW of
C             the system with the transfer-function matrix W.
C             On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C             NW-by-NW part of this array contains a real Schur form
C             of AW.
C             AW is not referenced if WEIGHT = 'L' or 'N'.
C
C     LDAW    INTEGER
C             The leading dimension of the array AW.
C             LDAW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C             LDAW >= 1,         if WEIGHT = 'L' or 'N'.
C
C     BW      (input/output) DOUBLE PRECISION array, dimension (LDBW,M)
C             On entry, if WEIGHT = 'R' or 'B', the leading NW-by-M part
C             of this array must contain the input matrix BW of the
C             system with the transfer-function matrix W.
C             On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C             NW-by-M part of this array contains the transformed input
C             matrix BW.
C             BW is not referenced if WEIGHT = 'L' or 'N'.
C
C     LDBW    INTEGER
C             The leading dimension of the array BW.
C             LDBW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C             LDBW >= 1,         if WEIGHT = 'L' or 'N'.
C
C     CW      (input/output) DOUBLE PRECISION array, dimension (LDCW,NW)
C             On entry, if WEIGHT = 'R' or 'B', the leading M-by-NW part
C             of this array must contain the output matrix CW of the
C             system with the transfer-function matrix W.
C             On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C             M-by-NW part of this array contains the transformed output
C             matrix CW.
C             CW is not referenced if WEIGHT = 'L' or 'N'.
C
C     LDCW    INTEGER
C             The leading dimension of the array CW.
C             LDCW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C             LDCW >= 1,        if WEIGHT = 'L' or 'N'.
C
C     DW      (input) DOUBLE PRECISION array, dimension (LDDW,M)
C             If WEIGHT = 'R' or 'B', the leading M-by-M part of this
C             array must contain the feedthrough matrix DW of the system
C             with the transfer-function matrix W.
C             DW is not referenced if WEIGHT = 'L' or 'N'.
C
C     LDDW    INTEGER
C             The leading dimension of the array DW.
C             LDDW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C             LDDW >= 1,        if WEIGHT = 'L' or 'N'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX( 1, LDW1, LDW2 ), where
C               LDW1 = 0 if WEIGHT = 'R' or 'N' and
C               LDW1 = MAX( NV*(NV+5), NV*N + MAX( a, P*N, P*M ) )
C                      if WEIGHT = 'L' or WEIGHT = 'B',
C               LDW2 = 0 if WEIGHT = 'L' or 'N' and
C               LDW2 = MAX( NW*(NW+5), NW*N + MAX( b, M*N, P*M ) )
C                      if WEIGHT = 'R' or WEIGHT = 'B',
C               a = 0,    b = 0,     if DICO = 'C' or  JOB = 'N',
C               a = 2*NV, b = 2*NW,  if DICO = 'D' and JOB = 'C'.
C             For good performance, LDWORK should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             =  0:  no warning;
C             =  1:  JOB = 'N' and AV is not completely unstable, or
C                    JOB = 'C' and AV is not stable;
C             =  2:  JOB = 'N' and AW is not completely unstable, or
C                    JOB = 'C' and AW is not stable;
C             =  3:  both above conditions appear.
C
C     Error Indicator
C
C     INFO    INTEGER
C             =  0:  successful exit;
C             <  0:  if INFO = -i, the i-th argument had an illegal
C                    value;
C             =  1:  the reduction of AV to a real Schur form failed;
C             =  2:  the reduction of AW to a real Schur form failed;
C             =  3:  the solution of the Sylvester equation failed
C                    because the matrices A and AV have common
C                    eigenvalues (if JOB = 'N'), or -AV and A have
C                    common eigenvalues (if JOB = 'C' and DICO = 'C'),
C                    or AV has an eigenvalue which is the reciprocal of
C                    one of the eigenvalues of A (if JOB = 'C' and
C                    DICO = 'D');
C             =  4:  the solution of the Sylvester equation failed
C                    because the matrices A and AW have common
C                    eigenvalues (if JOB = 'N'), or -AW and A have
C                    common eigenvalues (if JOB = 'C' and DICO = 'C'),
C                    or AW has an eigenvalue which is the reciprocal of
C                    one of the eigenvalues of A (if JOB = 'C' and
C                    DICO = 'D').
C
C     METHOD
C
C     The matrices of the stable projection of V*G*W are computed as
C
C       BS = B*DW + Y*BW,  CS = CV*X + DV*C,  DS = DV*D*DW,
C
C     where X and Y satisfy the continuous-time Sylvester equations
C
C       AV*X - X*A  + BV*C = 0,
C       -A*Y + Y*AW + B*CW = 0.
C
C     The matrices of the stable projection of conj(V)*G*conj(W) are
C     computed using the explicit formulas established in [1].
C
C     For a continuous-time system, the matrices BS, CS and DS of
C     the stable projection are computed as
C
C       BS = B*DW' + Y*CW',  CS = BV'*X + DV'*C,  DS = DV'*D*DW',
C
C     where X and Y satisfy the continuous-time Sylvester equations
C
C       AV'*X + X*A   + CV'*C = 0,
C         A*Y + Y*AW' + B*BW' = 0.
C
C     For a discrete-time system, the matrices BS, CS and DS of
C     the stable projection are computed as
C
C       BS = B*DW' + A*Y*CW',  CS = BV'*X*A + DV'*C,
C       DS = DV'*D*DW' + BV'*X*B*DW' + DV'*C*Y*CW' + BV'*X*A*Y*CW',
C
C     where X and Y satisfy the discrete-time Sylvester equations
C
C       AV'*X*A + CV'*C = X,
C       A*Y*AW' + B*BW' = Y.
C
C     REFERENCES
C
C     [1] Varga A.
C         Explicit formulas for an efficient implementation
C         of the frequency-weighting model reduction approach.
C         Proc. 1993 European Control Conference, Groningen, NL,
C         pp. 693-696, 1993.
C
C     NUMERICAL ASPECTS
C
C     The implemented methods rely on numerically stable algorithms.
C
C     FURTHER COMMENTS
C
C     The matrix A must be stable, but its stability is not checked by
C     this routine.
C
C     CONTRIBUTORS
C
C     A. Varga, German Aerospace Center, Oberpfaffenhofen, April 2000.
C     D. Sima, University of Bucharest, May 2000.
C     V. Sima, Research Institute for Informatics, Bucharest, May 2000.
C     Based on the RASP routines SFRLW, SFRLW1, SFRRW and SFRRW1,
C     by A. Varga, 1992.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Frequency weighting, model reduction, multivariable system,
C     state-space model, state-space representation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION ZERO, ONE
      PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER        DICO, JOB, WEIGHT
      INTEGER          INFO, IWARN, LDA, LDAV, LDAW, LDB, LDBV, LDBW,
     $                 LDC, LDCV, LDCW, LDD, LDDV, LDDW, LDWORK, M, N,
     $                 NV, NW, P
C     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*),   B(LDB,*),   C(LDC,*),   D(LDD,*),
     $                 AV(LDAV,*), BV(LDBV,*), CV(LDCV,*), DV(LDDV,*),
     $                 AW(LDAW,*), BW(LDBW,*), CW(LDCW,*), DW(LDDW,*),
     $                 DWORK(*)
C     .. Local Scalars
      LOGICAL          CONJS, DISCR, FRWGHT, LEFTW, RIGHTW
      DOUBLE PRECISION SCALE, WORK
      INTEGER          I, IA, IB, IERR, KW, LDW, LDWN, LW
C     .. External Functions ..
      LOGICAL          LSAME
      DOUBLE PRECISION DLAPY2
      EXTERNAL         DLAPY2, LSAME
C     .. External Subroutines ..
      EXTERNAL         DGEMM, DLACPY, DTRSYL, SB04PY, TB01WD, XERBLA
C     .. Executable Statements ..
C
      CONJS  = LSAME( JOB,    'C' )
      DISCR  = LSAME( DICO,   'D' )
      LEFTW  = LSAME( WEIGHT, 'L' ) .OR. LSAME( WEIGHT, 'B' )
      RIGHTW = LSAME( WEIGHT, 'R' ) .OR. LSAME( WEIGHT, 'B' )
      FRWGHT = LEFTW .OR. RIGHTW
C
      IWARN = 0
      INFO  = 0
      IF ( DISCR .AND. CONJS ) THEN
         IA = 2*NV
         IB = 2*NW
      ELSE
         IA = 0
         IB = 0
      END IF
      LW = 1
      IF( LEFTW )
     $   LW = MAX( LW, NV*( NV + 5 ), NV*N + MAX( IA, P*N, P*M ) )
      IF( RIGHTW )
     $   LW = MAX( LW, NW*( NW + 5 ), NW*N + MAX( IB, M*N, P*M ) )
C
C     Test the input scalar arguments.
C
      IF( .NOT. ( LSAME( JOB, 'N' ) .OR. CONJS ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( FRWGHT .OR. LSAME( WEIGHT, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( NV.LT.0 ) THEN
         INFO = -5
      ELSE IF( NW.LT.0 ) THEN
         INFO = -6
      ELSE IF( M.LT.0 ) THEN
         INFO = -7
      ELSE IF( P.LT.0 ) THEN
         INFO = -8
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -14
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -16
      ELSE IF( LDAV.LT.1 .OR. ( LEFTW  .AND. LDAV.LT.NV ) ) THEN
         INFO = -18
      ELSE IF( LDBV.LT.1 .OR. ( LEFTW  .AND. LDBV.LT.NV ) ) THEN
         INFO = -20
      ELSE IF( LDCV.LT.1 .OR. ( LEFTW  .AND. LDCV.LT.P  ) ) THEN
         INFO = -22
      ELSE IF( LDDV.LT.1 .OR. ( LEFTW  .AND. LDDV.LT.P  ) ) THEN
         INFO = -24
      ELSE IF( LDAW.LT.1 .OR. ( RIGHTW .AND. LDAW.LT.NW ) ) THEN
         INFO = -26
      ELSE IF( LDBW.LT.1 .OR. ( RIGHTW .AND. LDBW.LT.NW ) ) THEN
         INFO = -28
      ELSE IF( LDCW.LT.1 .OR. ( RIGHTW .AND. LDCW.LT.M  ) ) THEN
         INFO = -30
      ELSE IF( LDDW.LT.1 .OR. ( RIGHTW .AND. LDDW.LT.M  ) ) THEN
         INFO = -32
      ELSE IF( LDWORK.LT.LW ) THEN
         INFO = -34
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB09KX', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( .NOT.FRWGHT .OR. MIN( M, P ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      WORK = ONE
      IF( LEFTW .AND. NV.GT.0 ) THEN
C
C        Reduce AV to a real Schur form using an orthogonal similarity
C        transformation AV <- Q'*AV*Q and apply the transformation to
C        BV and CV: BV <- Q'*BV and CV <- CV*Q.
C
C        Workspace needed:  NV*(NV+5);
C                           prefer larger.
C
         KW = NV*( NV + 2 ) + 1
         CALL TB01WD( NV, P, P, AV, LDAV, BV, LDBV, CV, LDCV,
     $                DWORK(2*NV+1), NV, DWORK, DWORK(NV+1), DWORK(KW),
     $                LDWORK-KW+1, IERR )
         IF( IERR.NE.0 ) THEN
            INFO = 1
            RETURN
         END IF
         WORK = MAX( WORK, DWORK(KW) + DBLE( KW - 1 ) )
C
         IF( CONJS ) THEN
C
C           Check the stability of the eigenvalues of AV.
C
            IF ( DISCR ) THEN
               DO 10 I = 1, NV
                  IF( DLAPY2( DWORK(I), DWORK(NV+I) ).GE.ONE) THEN
                     IWARN = 1
                     GO TO 50
                  END IF
   10          CONTINUE
            ELSE
               DO 20 I = 1, NV
                  IF( DWORK(I).GE.ZERO ) THEN
                     IWARN = 1
                     GO TO 50
                  END IF
   20          CONTINUE
            END IF
         ELSE
C
C           Check the anti-stability of the eigenvalues of AV.
C
            IF ( DISCR ) THEN
               DO 30 I = 1, NV
                  IF( DLAPY2( DWORK(I), DWORK(NV+I) ).LE.ONE) THEN
                     IWARN = 1
                     GO TO 50
                  END IF
   30          CONTINUE
            ELSE
               DO 40 I = 1, NV
                  IF( DWORK(I).LE.ZERO ) THEN
                     IWARN = 1
                     GO TO 50
                  END IF
   40          CONTINUE
            END IF
         END IF
   50    CONTINUE
C
      END IF
C
      IF( RIGHTW .AND. NW.GT.0 ) THEN
C
C        Reduce AW to a real Schur form using an orthogonal similarity
C        transformation AW <- T'*AW*T and apply the transformation to
C        BW and CW: BW <- T'*BW and CW <- CW*T.
C
C        Workspace needed:  NW*(NW+5);
C                           prefer larger.
C
         KW = NW*( NW + 2 ) + 1
         CALL TB01WD( NW, M, M, AW, LDAW, BW, LDBW, CW, LDCW,
     $                DWORK(2*NW+1), NW, DWORK, DWORK(NW+1), DWORK(KW),
     $                LDWORK-KW+1, IERR )
         IF( IERR.NE.0 ) THEN
            INFO = 2
            RETURN
         END IF
         WORK = MAX( WORK, DWORK(KW) + DBLE( KW - 1 ) )
C
         IF( CONJS ) THEN
C
C           Check the stability of the eigenvalues of AW.
C
            IF ( DISCR ) THEN
               DO 60 I = 1, NW
                  IF( DLAPY2( DWORK(I), DWORK(NW+I) ).GE.ONE) THEN
                     IWARN = IWARN + 2
                     GO TO 100
                  END IF
   60          CONTINUE
            ELSE
               DO 70 I = 1, NW
                  IF( DWORK(I).GE.ZERO ) THEN
                     IWARN = IWARN + 2
                     GO TO 100
                  END IF
   70          CONTINUE
            END IF
         ELSE
C
C           Check the anti-stability of the eigenvalues of AW.
C
            IF ( DISCR ) THEN
               DO 80 I = 1, NW
                  IF( DLAPY2( DWORK(I), DWORK(NW+I) ).LE.ONE) THEN
                     IWARN = IWARN + 2
                     GO TO 100
                  END IF
   80          CONTINUE
            ELSE
               DO 90 I = 1, NW
                  IF( DWORK(I).LE.ZERO ) THEN
                     IWARN = IWARN + 2
                     GO TO 100
                  END IF
   90          CONTINUE
            END IF
         END IF
  100    CONTINUE
      END IF
C
      IF( LEFTW ) THEN
         LDW = MAX( NV, 1 )
         KW  = NV*N + 1
         IF( CONJS ) THEN
C
C           Compute the projection of conj(V)*G.
C
C           Total workspace needed:  NV*N + MAX( a, P*N, P*M ), where
C                                    a = 0,    if DICO = 'C',
C                                    a = 2*NV, if DICO = 'D'.
C
C           Compute -CV'*C.
C           Workspace needed: NV*N.
C
            CALL DGEMM( 'T', 'N', NV, N, P, -ONE, CV, LDCV, C, LDC,
     $                  ZERO, DWORK, LDW )
C
            IF( DISCR ) THEN
C
C              Compute X and SCALE satisfying
C
C              AV'*X*A - X = -SCALE*CV'*C.
C
C              Additional workspace needed: 2*NV.
C
               CALL SB04PY( 'T', 'N', -1, NV, N, AV, LDAV, A, LDA,
     $                      DWORK, LDW, SCALE, DWORK(KW), IERR )
               IF( IERR.NE.0 ) THEN
                  INFO = 3
                  RETURN
               END IF
C
C              Construct C <- DV'*C + BV'*X*A/SCALE,
C                        D <- DV'*D + BV'*X*B/SCALE.
C
C              Additional workspace needed: MAX( P*N, P*M ).
C
C              C <- DV'*C.
C
               CALL DGEMM( 'T', 'N', P, N, P, ONE, DV, LDDV, C, LDC,
     $                      ZERO, DWORK(KW), P )
               CALL DLACPY( 'F', P, N, DWORK(KW), P, C, LDC )
C
C              D <- DV'*D.
C
               CALL DGEMM( 'T', 'N', P, M, P, ONE, DV, LDDV, D, LDD,
     $                      ZERO, DWORK(KW), P )
               CALL DLACPY( 'F', P, M, DWORK(KW), P, D, LDD )
C
C              C <- C + BV'*X*A/SCALE.
C
               CALL DGEMM( 'T', 'N', P, N, NV, ONE / SCALE, BV, LDBV,
     $                     DWORK, LDW, ZERO, DWORK(KW), P )
               CALL DGEMM( 'N', 'N', P, N, N, ONE, DWORK(KW), P, A, LDA,
     $                     ONE, C, LDC )
C
C              D <- D + BV'*X*B/SCALE.
C
               CALL DGEMM( 'N', 'N', P, M, N, ONE, DWORK(KW), P, B, LDB,
     $                     ONE, D, LDD )
            ELSE
C
C              Compute X and SCALE satisfying
C
C              AV'*X + X*A + SCALE*CV'*C = 0.
C
               CALL DTRSYL( 'T', 'N', 1, NV, N, AV, LDAV, A, LDA,
     $                      DWORK, LDW, SCALE, IERR )
               IF( IERR.NE.0 ) THEN
                  INFO = 3
                  RETURN
               END IF
C
C              Construct C and D.
C              Additional workspace needed: MAX( P*N, P*M ).
C
C              Construct C <- BV'*X/SCALE + DV'*C.
C
               CALL DGEMM( 'T', 'N', P, N, P, ONE, DV, LDDV, C, LDC,
     $                     ZERO, DWORK(KW), P )
               CALL DLACPY( 'F', P, N, DWORK(KW), P, C, LDC )
               CALL DGEMM( 'T', 'N', P, N, NV, ONE / SCALE, BV, LDBV,
     $                     DWORK, LDW, ONE, C, LDC )
C
C              Construct D <- DV'*D.
C
               CALL DGEMM( 'T', 'N', P, M, P, ONE, DV, LDDV, D, LDD,
     $                     ZERO, DWORK(KW), P )
               CALL DLACPY( 'F', P, M, DWORK(KW), P, D, LDD )
            END IF
         ELSE
C
C           Compute the projection of V*G.
C
C           Total workspace needed:  NV*N + MAX( P*N, P*M ).
C
C           Compute -BV*C.
C           Workspace needed: NV*N.
C
            CALL DGEMM( 'N', 'N', NV, N, P, -ONE, BV, LDBV, C, LDC,
     $                  ZERO, DWORK, LDW )
C
C           Compute X and SCALE satisfying
C
C           AV*X - X*A + SCALE*BV*C = 0.
C
            CALL DTRSYL( 'N', 'N', -1, NV, N, AV, LDAV, A, LDA,
     $                   DWORK, LDW, SCALE, IERR )
            IF( IERR.NE.0 ) THEN
               INFO = 3
               RETURN
            END IF
C
C           Construct C <- CV*X/SCALE + DV*C.
C
            CALL DGEMM( 'N', 'N', P, N, P, ONE, DV, LDDV, C, LDC,
     $                  ZERO, DWORK(KW), P )
            CALL DLACPY( 'F', P, N, DWORK(KW), P, C, LDC )
            CALL DGEMM( 'N', 'N', P, N, NV, ONE / SCALE, CV, LDCV,
     $                  DWORK, LDW, ONE, C, LDC )
C
C           Construct D <- DV*D.
C
            CALL DGEMM( 'N', 'N', P, M, P, ONE, DV, LDDV, D, LDD,
     $                  ZERO, DWORK(KW), P )
            CALL DLACPY( 'F', P, M, DWORK(KW), P, D, LDD )
         END IF
      END IF
C
      IF( RIGHTW ) THEN
         LDWN = MAX( N, 1 )
         KW   = N*NW + 1
         IF( CONJS ) THEN
C
C           Compute the projection of G*conj(W) or of conj(V)*G*conj(W).
C
C           Total workspace needed:  NW*N + MAX( b, M*N, P*M ), where
C                                    b = 0,    if DICO = 'C',
C                                    b = 2*NW, if DICO = 'D'.
C
C           Compute -BW*B'.
C           Workspace needed: N*NW.
C
            LDW = MAX( NW, 1 )
            CALL DGEMM( 'N', 'T', NW, N, M, -ONE, BW, LDBW, B, LDB,
     $                  ZERO, DWORK, LDW )
C
            IF( DISCR ) THEN
C
C              Compute Y' and SCALE satisfying
C
C              AW*Y'*A' - Y' = -SCALE*BW*B'.
C
C              Additional workspace needed: 2*NW.
C
               CALL SB04PY( 'N', 'T', -1, NW, N, AW, LDAW, A, LDA,
     $                      DWORK, LDW, SCALE, DWORK(KW), IERR )
               IF( IERR.NE.0 ) THEN
                  INFO = 4
                  RETURN
               END IF
C
C              Construct B <- B*DW' + A*Y*CW'/SCALE,
C                        D <- D*DW' + C*Y*CW'/SCALE.
C
C              Additional workspace needed: MAX( N*M, P*M ).
C
C              B <- B*DW'.
C
               CALL DGEMM( 'N', 'T', N, M, M, ONE, B, LDB, DW, LDDW,
     $                     ZERO, DWORK(KW), LDWN )
               CALL DLACPY( 'F', N, M, DWORK(KW), LDWN, B, LDB )
C
C              D <- D*DW'.
C
               CALL DGEMM( 'N', 'T', P, M, M, ONE, D, LDD, DW, LDDW,
     $                    ZERO, DWORK(KW), P )
               CALL DLACPY( 'F', P, M, DWORK(KW), P, D, LDD )
C
C              B <- B + A*Y*CW'/SCALE.
C
               CALL DGEMM( 'T', 'T', N, M, NW, ONE / SCALE, DWORK, LDW,
     $                     CW, LDCW, ZERO, DWORK(KW), LDWN )
               CALL DGEMM( 'N', 'N', N, M, N, ONE, A, LDA,
     $                     DWORK(KW), LDWN, ONE, B, LDB )
C
C              D <- D + C*Y*CW'/SCALE.
C
               CALL DGEMM( 'N', 'N', P, M, N, ONE, C, LDC,
     $                     DWORK(KW), LDWN, ONE, D, LDD )
            ELSE
C
C              Compute Y' and SCALE satisfying
C
C              AW*Y' + Y'*A' + SCALE*BW*B' = 0.
C
               CALL DTRSYL( 'N', 'T', 1, NW, N, AW, LDAW, A, LDA,
     $                      DWORK, LDW, SCALE, IERR )
               IF( IERR.NE.0 ) THEN
                  INFO = 4
                  RETURN
               END IF
C
C              Construct B and D.
C              Additional workspace needed: MAX( N*M, P*M ).
C
C              Construct B <- B*DW' + Y*CW'/SCALE.
C
               CALL DGEMM( 'N', 'T', N, M, M, ONE, B, LDB, DW, LDDW,
     $                     ZERO, DWORK(KW), LDWN )
               CALL DLACPY( 'F', N, M, DWORK(KW), LDWN, B, LDB )
               CALL DGEMM( 'T', 'T', N, M, NW, ONE / SCALE, DWORK, LDW,
     $                     CW, LDCW, ONE, B, LDB)
C
C              D <- D*DW'.
C
               CALL DGEMM( 'N', 'T', P, M, M, ONE, D, LDD, DW, LDDW,
     $                     ZERO, DWORK(KW), P )
               CALL DLACPY( 'F', P, M, DWORK(KW), P, D, LDD )
            END IF
         ELSE
C
C           Compute the projection of G*W or of V*G*W.
C
C           Total workspace needed:  NW*N + MAX( M*N, P*M ).
C
C           Compute B*CW.
C           Workspace needed: N*NW.
C
            CALL DGEMM( 'N', 'N', N, NW, M, ONE, B, LDB, CW, LDCW,
     $                  ZERO, DWORK, LDWN )
C
C           Compute Y and SCALE satisfying
C
C           A*Y - Y*AW - SCALE*B*CW = 0.
C
            CALL DTRSYL( 'N', 'N', -1, N, NW, A, LDA, AW, LDAW,
     $                   DWORK, LDWN, SCALE, IERR )
            IF( IERR.NE.0 ) THEN
               INFO = 4
               RETURN
            END IF
C
C           Construct B and D.
C           Additional workspace needed: MAX( N*M, P*M ).
C           Construct B <- B*DW + Y*BW/SCALE.
C
            CALL DGEMM( 'N', 'N', N, M, M, ONE, B, LDB, DW, LDDW,
     $                  ZERO, DWORK(KW), LDWN )
            CALL DLACPY( 'F', N, M, DWORK(KW), LDWN, B, LDB )
            CALL DGEMM( 'N', 'N', N, M, NW, ONE / SCALE, DWORK, LDWN,
     $                  BW, LDBW, ONE, B, LDB)
C
C           D <- D*DW.
C
            CALL DGEMM( 'N', 'N', P, M, M, ONE, D, LDD, DW, LDDW,
     $                  ZERO, DWORK(KW), P )
            CALL DLACPY( 'F', P, M, DWORK(KW), P, D, LDD )
         END IF
      END IF
C
      DWORK(1) = MAX( WORK, DBLE( LW ) )
C
      RETURN
C *** Last line of AB09KX ***
      END