1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
DOUBLE PRECISION FUNCTION AB13AX( DICO, N, M, P, A, LDA, B, LDB,
$ C, LDC, HSV, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the Hankel-norm of the transfer-function matrix G of
C a stable state-space system (A,B,C). The state dynamics matrix A
C of the given system is an upper quasi-triangular matrix in
C real Schur form.
C
C FUNCTION VALUE
C
C AB13AX DOUBLE PRECISION
C The Hankel-norm of G (if INFO = 0).
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the state-space representation, i.e. the
C order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C state dynamics matrix A in a real Schur canonical form.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C input/state matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array must contain the
C state/output matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, this array contains the Hankel singular
C values of the given system ordered decreasingly.
C HSV(1) is the Hankel norm of the given system.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,N*(MAX(N,M,P)+5)+N*(N+1)/2).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the state matrix A is not stable (if DICO = 'C')
C or not convergent (if DICO = 'D');
C = 2: the computation of Hankel singular values failed.
C
C METHOD
C
C Let be the stable linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system, and let G be the corresponding
C transfer-function matrix. The Hankel-norm of G is computed as the
C the maximum Hankel singular value of the system (A,B,C).
C The computation of the Hankel singular values is performed
C by using the square-root method of [1].
C
C REFERENCES
C
C [1] Tombs M.S. and Postlethwaite I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C NUMERICAL ASPECTS
C
C The implemented method relies on a square-root technique.
C 3
C The algorithms require about 17N floating point operations.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, July 1998.
C Based on the RASP routine SHANRM.
C
C REVISIONS
C
C Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C Feb. 2000, V. Sima, Research Institute for Informatics, Bucharest.
C Oct. 2001, V. Sima, Research Institute for Informatics, Bucharest.
C
C KEYWORDS
C
C Multivariable system, state-space model, system norms.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO
INTEGER INFO, LDA, LDB, LDC, LDWORK, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*)
C .. Local Scalars ..
LOGICAL DISCR
INTEGER I, IERR, J, KR, KS, KTAU, KU, KW, MNMP
DOUBLE PRECISION SCALEC, SCALEO, WRKOPT
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DLACPY, DSCAL, DTPMV, MA02DD, MB03UD, SB03OU,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
DISCR = LSAME( DICO, 'D' )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( P.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -10
ELSE IF( LDWORK.LT.MAX( 1, N*( MAX( N, M, P ) + 5 ) +
$ ( N*( N + 1 ) )/2 ) ) THEN
INFO = -13
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB13AX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
AB13AX = ZERO
DWORK(1) = ONE
RETURN
END IF
C
C Allocate N*MAX(N,M,P), N, and N*(N+1)/2 working storage for the
C matrices S, TAU, and R, respectively. S shares the storage with U.
C
KU = 1
KS = 1
MNMP = MAX( N, M, P )
KTAU = KS + N*MNMP
KR = KTAU + N
KW = KR
C
C Copy C in U.
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KU), MNMP )
C
C If DISCR = .FALSE., solve for R the Lyapunov equation
C 2
C A'*(R'*R) + (R'*R)*A + scaleo * C'*C = 0 .
C
C If DISCR = .TRUE., solve for R the Lyapunov equation
C 2
C A'*(R'*R)*A + scaleo * C'*C = R'*R .
C
C Workspace needed: N*(MAX(N,M,P)+1);
C Additional workspace: need 4*N;
C prefer larger.
C
CALL SB03OU( DISCR, .FALSE., N, P, A, LDA, DWORK(KU), MNMP,
$ DWORK(KTAU), DWORK(KU), N, SCALEO, DWORK(KW),
$ LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 1
RETURN
ENDIF
C
WRKOPT = DWORK(KW) + DBLE( KW-1 )
C
C Pack the upper triangle of R in DWORK(KR).
C Workspace needed: N*(MAX(N,M,P) + 1) + N*(N+1)/2.
C
CALL MA02DD( 'Pack', 'Upper', N, DWORK(KU), N, DWORK(KR) )
C
KW = KR + ( N*( N + 1 ) )/2
C
C Copy B in S (over U).
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KS), N )
C
C If DISCR = .FALSE., solve for S the Lyapunov equation
C 2
C A*(S*S') + (S*S')*A' + scalec *B*B' = 0 .
C
C If DISCR = .TRUE., solve for S the Lyapunov equation
C 2
C A*(S*S')*A' + scalec *B*B' = S*S' .
C
C Workspace needed: N*(MAX(N,M,P) + 1) + N*(N+1)/2;
C Additional workspace: need 4*N;
C prefer larger.
C
CALL SB03OU( DISCR, .TRUE., N, M, A, LDA, DWORK(KS), N,
$ DWORK(KTAU), DWORK(KS), N, SCALEC, DWORK(KW),
$ LDWORK-KW+1, IERR )
C
WRKOPT = MAX( WRKOPT, DWORK(KW) + DBLE( KW-1 ) )
C
C | x x |
C Compute R*S in the form | 0 x | in S. Note that R is packed.
C
J = KS
DO 10 I = 1, N
CALL DTPMV( 'Upper', 'NoTranspose', 'NonUnit', I, DWORK(KR),
$ DWORK(J), 1 )
J = J + N
10 CONTINUE
C
C Compute the singular values of the upper triangular matrix R*S.
C
C Workspace needed: N*MAX(N,M,P);
C Additional workspace: need MAX(1,5*N);
C prefer larger.
C
KW = KTAU
CALL MB03UD( 'NoVectors', 'NoVectors', N, DWORK(KS), N, DWORK, 1,
$ HSV, DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 2
RETURN
ENDIF
C
C Scale singular values.
C
CALL DSCAL( N, ONE / SCALEC / SCALEO, HSV, 1 )
AB13AX = HSV(1)
C
DWORK(1) = MAX( WRKOPT, DWORK(KW) + DBLE( KW-1 ) )
C
RETURN
C *** Last line of AB13AX ***
END
|