1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
DOUBLE PRECISION FUNCTION AB13BD( DICO, JOBN, N, M, P, A, LDA,
$ B, LDB, C, LDC, D, LDD, NQ, TOL,
$ DWORK, LDWORK, IWARN, INFO)
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the H2 or L2 norm of the transfer-function matrix G
C of the system (A,B,C,D). G must not have poles on the imaginary
C axis, for a continuous-time system, or on the unit circle, for
C a discrete-time system. If the H2-norm is computed, the system
C must be stable.
C
C FUNCTION VALUE
C
C AB13BD DOUBLE PRECISION
C The H2-norm of G, if JOBN = 'H', or the L2-norm of G,
C if JOBN = 'L' (if INFO = 0).
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOBN CHARACTER*1
C Specifies the norm to be computed as follows:
C = 'H': the H2-norm;
C = 'L': the L2-norm.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A, the number of rows of the
C matrix B, and the number of columns of the matrix C.
C N represents the dimension of the state vector. N >= 0.
C
C M (input) INTEGER
C The number of columns of the matrices B and D.
C M represents the dimension of input vector. M >= 0.
C
C P (input) INTEGER
C The number of rows of the matrices C and D.
C P represents the dimension of output vector. P >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix of the system.
C On exit, the leading NQ-by-NQ part of this array contains
C the state dynamics matrix (in a real Schur form) of the
C numerator factor Q of the right coprime factorization with
C inner denominator of G (see METHOD).
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input/state matrix of the system.
C On exit, the leading NQ-by-M part of this array contains
C the input/state matrix of the numerator factor Q of the
C right coprime factorization with inner denominator of G
C (see METHOD).
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the state/output matrix of the system.
C On exit, the leading P-by-NQ part of this array contains
C the state/output matrix of the numerator factor Q of the
C right coprime factorization with inner denominator of G
C (see METHOD).
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the input/output matrix of the system.
C If DICO = 'C', D must be a null matrix.
C On exit, the leading P-by-M part of this array contains
C the input/output matrix of the numerator factor Q of
C the right coprime factorization with inner denominator
C of G (see METHOD).
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C NQ (output) INTEGER
C The order of the resulting numerator Q of the right
C coprime factorization with inner denominator of G (see
C METHOD).
C Generally, NQ = N - NS, where NS is the number of
C uncontrollable unstable eigenvalues.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The absolute tolerance level below which the elements of
C B are considered zero (used for controllability tests).
C If the user sets TOL <= 0, then an implicitly computed,
C default tolerance, defined by TOLDEF = N*EPS*NORM(B),
C is used instead, where EPS is the machine precision
C (see LAPACK Library routine DLAMCH) and NORM(B) denotes
C the 1-norm of B.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of working array DWORK.
C LDWORK >= MAX( 1, M*(N+M) + MAX( N*(N+5), M*(M+2), 4*P ),
C N*( MAX( N, P ) + 4 ) + MIN( N, P ) ).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = K: K violations of the numerical stability condition
C occured during the assignment of eigenvalues in
C computing the right coprime factorization with inner
C denominator of G (see the SLICOT subroutine SB08DD).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction of A to a real Schur form failed;
C = 2: a failure was detected during the reordering of the
C real Schur form of A, or in the iterative process
C for reordering the eigenvalues of Z'*(A + B*F)*Z
C along the diagonal (see SLICOT routine SB08DD);
C = 3: if DICO = 'C' and the matrix A has a controllable
C eigenvalue on the imaginary axis, or DICO = 'D'
C and A has a controllable eigenvalue on the unit
C circle;
C = 4: the solution of Lyapunov equation failed because
C the equation is singular;
C = 5: if DICO = 'C' and D is a nonzero matrix;
C = 6: if JOBN = 'H' and the system is unstable.
C
C METHOD
C
C The subroutine is based on the algorithms proposed in [1] and [2].
C
C If the given transfer-function matrix G is unstable, then a right
C coprime factorization with inner denominator of G is first
C computed
C -1
C G = Q*R ,
C
C where Q and R are stable transfer-function matrices and R is
C inner. If G is stable, then Q = G and R = I.
C Let (AQ,BQ,CQ,DQ) be the state-space representation of Q.
C
C If DICO = 'C', then the L2-norm of G is computed as
C
C NORM2(G) = NORM2(Q) = SQRT(TRACE(BQ'*X*BQ)),
C
C where X satisfies the continuous-time Lyapunov equation
C
C AQ'*X + X*AQ + CQ'*CQ = 0.
C
C If DICO = 'D', then the l2-norm of G is computed as
C
C NORM2(G) = NORM2(Q) = SQRT(TRACE(BQ'*X*BQ+DQ'*DQ)),
C
C where X satisfies the discrete-time Lyapunov equation
C
C AQ'*X*AQ - X + CQ'*CQ = 0.
C
C REFERENCES
C
C [1] Varga A.
C On computing 2-norms of transfer-function matrices.
C Proc. 1992 ACC, Chicago, June 1992.
C
C [2] Varga A.
C A Schur method for computing coprime factorizations with
C inner denominators and applications in model reduction.
C Proc. ACC'93, San Francisco, CA, pp. 2130-2131, 1993.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires no more than 14N floating point
C operations.
C
C CONTRIBUTOR
C
C C. Oara and A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, July 1998.
C Based on the RASP routine SL2NRM.
C
C REVISIONS
C
C Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C Oct. 2001, V. Sima, Research Institute for Informatics, Bucharest.
C Jan. 2003, V. Sima, Research Institute for Informatics, Bucharest.
C
C KEYWORDS
C
C Coprime factorization, Lyapunov equation, multivariable system,
C state-space model, system norms.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOBN
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD, LDWORK, M,
$ N, NQ, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DWORK(*)
C .. Local Scalars ..
LOGICAL DISCR
INTEGER KCR, KDR, KRW, KTAU, KU, MXNP, NR
DOUBLE PRECISION S2NORM, SCALE, WRKOPT
C .. External functions ..
LOGICAL LSAME
DOUBLE PRECISION DLANGE, DLAPY2
EXTERNAL DLANGE, DLAPY2, LSAME
C .. External subroutines ..
EXTERNAL DLACPY, DTRMM, SB03OU, SB08DD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C .. Executable Statements ..
C
DISCR = LSAME( DICO, 'D' )
INFO = 0
IWARN = 0
C
C Check the scalar input parameters.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( LSAME( JOBN, 'H' ) .OR. LSAME( JOBN, 'L' ) ) )
$ THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( P.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -11
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -13
ELSE IF( LDWORK.LT.MAX( 1, M*( N + M ) +
$ MAX( N*( N + 5 ), M*( M + 2 ), 4*P ),
$ N*( MAX( N, P ) + 4 ) + MIN( N, P ) ) )
$ THEN
INFO = -17
END IF
IF( INFO.NE.0 )THEN
C
C Error return.
C
CALL XERBLA( 'AB13BD', -INFO )
RETURN
END IF
C
C Compute the Frobenius norm of D.
C
S2NORM = DLANGE( 'Frobenius', P, M, D, LDD, DWORK )
IF( .NOT.DISCR .AND. S2NORM.NE.ZERO ) THEN
INFO = 5
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
NQ = 0
AB13BD = ZERO
DWORK(1) = ONE
RETURN
END IF
C
KCR = 1
KDR = KCR + M*N
KRW = KDR + M*M
C
C Compute the right coprime factorization with inner denominator
C of G.
C
C Workspace needed: M*(N+M);
C Additional workspace: need MAX( N*(N+5), M*(M+2), 4*M, 4*P );
C prefer larger.
C
CALL SB08DD( DICO, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD, NQ,
$ NR, DWORK(KCR), M, DWORK(KDR), M, TOL, DWORK(KRW),
$ LDWORK-KRW+1, IWARN, INFO )
IF( INFO.NE.0 )
$ RETURN
C
WRKOPT = DWORK(KRW) + DBLE( KRW-1 )
C
C Check stability.
C
IF( LSAME( JOBN, 'H' ) .AND. NR.GT.0 ) THEN
INFO = 6
RETURN
END IF
C
IF( NQ.GT.0 ) THEN
KU = 1
MXNP = MAX( NQ, P )
KTAU = NQ*MXNP + 1
KRW = KTAU + MIN( NQ, P )
C
C Find X, the solution of Lyapunov equation.
C
C Workspace needed: N*MAX(N,P) + MIN(N,P);
C Additional workspace: 4*N;
C prefer larger.
C
CALL DLACPY( 'Full', P, NQ, C, LDC, DWORK(KU), MXNP )
CALL SB03OU( DISCR, .FALSE., NQ, P, A, LDA, DWORK(KU), MXNP,
$ DWORK(KTAU), DWORK(KU), NQ, SCALE, DWORK(KRW),
$ LDWORK-KRW+1, INFO )
IF( INFO.NE.0 ) THEN
IF( INFO.EQ.1 ) THEN
INFO = 4
ELSE IF( INFO.EQ.2 ) THEN
INFO = 3
END IF
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(KRW) + DBLE( KRW-1 ) )
C
C Add the contribution of BQ'*X*BQ.
C
C Workspace needed: N*(N+M).
C
KTAU = NQ*NQ + 1
CALL DLACPY( 'Full', NQ, M, B, LDB, DWORK(KTAU), NQ )
CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', NQ, M,
$ ONE, DWORK(KU), NQ, DWORK(KTAU), NQ )
IF( NR.GT.0 )
$ S2NORM = DLANGE( 'Frobenius', P, M, D, LDD, DWORK )
S2NORM = DLAPY2( S2NORM, DLANGE( 'Frobenius', NQ, M,
$ DWORK(KTAU), NQ, DWORK )
$ / SCALE )
END IF
C
AB13BD = S2NORM
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of AB13BD ***
END
|