File: AB13BD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (390 lines) | stat: -rw-r--r-- 13,873 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
      DOUBLE PRECISION FUNCTION AB13BD( DICO, JOBN, N, M, P, A, LDA,
     $                                  B, LDB, C, LDC, D, LDD, NQ, TOL,
     $                                  DWORK, LDWORK, IWARN, INFO)
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the H2 or L2 norm of the transfer-function matrix G
C     of the system (A,B,C,D). G must not have poles on the imaginary
C     axis, for a continuous-time system, or on the unit circle, for
C     a discrete-time system. If the H2-norm is computed, the system
C     must be stable.
C
C     FUNCTION VALUE
C
C     AB13BD   DOUBLE PRECISION
C              The H2-norm of G, if JOBN = 'H', or the L2-norm of G,
C              if JOBN = 'L' (if INFO = 0).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     JOBN    CHARACTER*1
C             Specifies the norm to be computed as follows:
C             = 'H':  the H2-norm;
C             = 'L':  the L2-norm.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A, the number of rows of the
C             matrix B, and the number of columns of the matrix C.
C             N represents the dimension of the state vector.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrices B and D.
C             M represents the dimension of input vector.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrices C and D.
C             P represents the dimension of output vector.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix of the system.
C             On exit, the leading NQ-by-NQ part of this array contains
C             the state dynamics matrix (in a real Schur form) of the
C             numerator factor Q of the right coprime factorization with
C             inner denominator of G (see METHOD).
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input/state matrix of the system.
C             On exit, the leading NQ-by-M part of this array contains
C             the input/state matrix of the numerator factor Q of the
C             right coprime factorization with inner denominator of G
C             (see METHOD).
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix of the system.
C             On exit, the leading P-by-NQ part of this array contains
C             the state/output matrix of the numerator factor Q of the
C             right coprime factorization with inner denominator of G
C             (see METHOD).
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the input/output matrix of the system.
C             If DICO = 'C', D must be a null matrix.
C             On exit, the leading P-by-M part of this array contains
C             the input/output matrix of the numerator factor Q of
C             the right coprime factorization with inner denominator
C             of G (see METHOD).
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     NQ      (output) INTEGER
C             The order of the resulting numerator Q of the right
C             coprime factorization with inner denominator of G (see
C             METHOD).
C             Generally, NQ = N - NS, where NS is the number of
C             uncontrollable unstable eigenvalues.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The absolute tolerance level below which the elements of
C             B are considered zero (used for controllability tests).
C             If the user sets TOL <= 0, then an implicitly computed,
C             default tolerance, defined by  TOLDEF = N*EPS*NORM(B),
C             is used instead, where EPS is the machine precision
C             (see LAPACK Library routine DLAMCH) and NORM(B) denotes
C             the 1-norm of B.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of working array DWORK.
C             LDWORK >= MAX( 1, M*(N+M) + MAX( N*(N+5), M*(M+2), 4*P ),
C                               N*( MAX( N, P ) + 4 ) + MIN( N, P ) ).
C             For optimum performance LDWORK should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = K:  K violations of the numerical stability condition
C                   occured during the assignment of eigenvalues in
C                   computing the right coprime factorization with inner
C                   denominator of G (see the SLICOT subroutine SB08DD).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction of A to a real Schur form failed;
C             = 2:  a failure was detected during the reordering of the
C                   real Schur form of A, or in the iterative process
C                   for reordering the eigenvalues of Z'*(A + B*F)*Z
C                   along the diagonal (see SLICOT routine SB08DD);
C             = 3:  if DICO = 'C' and the matrix A has a controllable
C                   eigenvalue on the imaginary axis, or DICO = 'D'
C                   and A has a controllable eigenvalue on the unit
C                   circle;
C             = 4:  the solution of Lyapunov equation failed because
C                   the equation is singular;
C             = 5:  if DICO = 'C' and D is a nonzero matrix;
C             = 6:  if JOBN = 'H' and the system is unstable.
C
C     METHOD
C
C     The subroutine is based on the algorithms proposed in [1] and [2].
C
C     If the given transfer-function matrix G is unstable, then a right
C     coprime factorization with inner denominator of G is first
C     computed
C               -1
C        G = Q*R  ,
C
C     where Q and R are stable transfer-function matrices and R is
C     inner. If G is stable, then Q = G and R = I.
C     Let (AQ,BQ,CQ,DQ) be the state-space representation of Q.
C
C     If DICO = 'C', then the L2-norm of G is computed as
C
C        NORM2(G) = NORM2(Q) = SQRT(TRACE(BQ'*X*BQ)),
C
C     where X satisfies the continuous-time Lyapunov equation
C
C        AQ'*X + X*AQ + CQ'*CQ = 0.
C
C     If DICO = 'D', then the l2-norm of G is computed as
C
C        NORM2(G) = NORM2(Q) = SQRT(TRACE(BQ'*X*BQ+DQ'*DQ)),
C
C     where X satisfies the discrete-time Lyapunov equation
C
C        AQ'*X*AQ - X + CQ'*CQ = 0.
C
C     REFERENCES
C
C     [1] Varga A.
C         On computing 2-norms of transfer-function matrices.
C         Proc. 1992 ACC, Chicago, June 1992.
C
C     [2] Varga A.
C         A Schur method for computing coprime factorizations with
C         inner denominators and applications in model reduction.
C         Proc. ACC'93, San Francisco, CA, pp. 2130-2131, 1993.
C
C     NUMERICAL ASPECTS
C                                            3
C     The algorithm requires no more than 14N  floating point
C     operations.
C
C     CONTRIBUTOR
C
C     C. Oara and A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, July 1998.
C     Based on the RASP routine SL2NRM.
C
C     REVISIONS
C
C     Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C     Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C     Oct. 2001, V. Sima, Research Institute for Informatics, Bucharest.
C     Jan. 2003, V. Sima, Research Institute for Informatics, Bucharest.
C
C     KEYWORDS
C
C     Coprime factorization, Lyapunov equation, multivariable system,
C     state-space model, system norms.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, JOBN
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDD, LDWORK, M,
     $                  N, NQ, P
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           DISCR
      INTEGER           KCR, KDR, KRW, KTAU, KU, MXNP, NR
      DOUBLE PRECISION  S2NORM, SCALE, WRKOPT
C     .. External functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLANGE, DLAPY2
      EXTERNAL          DLANGE, DLAPY2, LSAME
C     .. External subroutines ..
      EXTERNAL          DLACPY, DTRMM, SB03OU, SB08DD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX, MIN
C     .. Executable Statements ..
C
      DISCR = LSAME( DICO, 'D' )
      INFO  = 0
      IWARN = 0
C
C     Check the scalar input parameters.
C
      IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( LSAME( JOBN, 'H' ) .OR. LSAME( JOBN, 'L' ) ) )
     $      THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -11
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -13
      ELSE IF( LDWORK.LT.MAX( 1, M*( N + M ) +
     $                             MAX( N*( N + 5 ), M*( M + 2 ), 4*P ),
     $                           N*( MAX( N, P ) + 4 ) + MIN( N, P ) ) )
     $      THEN
         INFO = -17
      END IF
      IF( INFO.NE.0 )THEN
C
C        Error return.
C
         CALL XERBLA( 'AB13BD', -INFO )
         RETURN
      END IF
C
C     Compute the Frobenius norm of D.
C
      S2NORM = DLANGE( 'Frobenius', P, M, D, LDD, DWORK )
      IF( .NOT.DISCR .AND. S2NORM.NE.ZERO ) THEN
         INFO = 5
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( N, M, P ).EQ.0 ) THEN
         NQ = 0
         AB13BD   = ZERO
         DWORK(1) = ONE
         RETURN
      END IF
C
      KCR = 1
      KDR = KCR + M*N
      KRW = KDR + M*M
C
C     Compute the right coprime factorization with inner denominator
C     of G.
C
C     Workspace needed:      M*(N+M);
C     Additional workspace:  need MAX( N*(N+5), M*(M+2), 4*M, 4*P );
C                            prefer larger.
C
      CALL SB08DD( DICO, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD, NQ,
     $             NR, DWORK(KCR), M, DWORK(KDR), M, TOL, DWORK(KRW),
     $             LDWORK-KRW+1, IWARN, INFO )
      IF( INFO.NE.0 )
     $   RETURN
C
      WRKOPT = DWORK(KRW) + DBLE( KRW-1 )
C
C     Check stability.
C
      IF( LSAME( JOBN, 'H' ) .AND. NR.GT.0 ) THEN
         INFO = 6
         RETURN
      END IF
C
      IF( NQ.GT.0 ) THEN
         KU   = 1
         MXNP = MAX( NQ, P )
         KTAU = NQ*MXNP + 1
         KRW  = KTAU + MIN( NQ, P )
C
C        Find X, the solution of Lyapunov equation.
C
C        Workspace needed:      N*MAX(N,P) + MIN(N,P);
C        Additional workspace:  4*N;
C                               prefer larger.
C
         CALL DLACPY( 'Full', P, NQ, C, LDC, DWORK(KU), MXNP )
         CALL SB03OU( DISCR, .FALSE., NQ, P, A, LDA, DWORK(KU), MXNP,
     $                DWORK(KTAU), DWORK(KU), NQ, SCALE, DWORK(KRW),
     $                LDWORK-KRW+1, INFO )
         IF( INFO.NE.0 ) THEN
            IF( INFO.EQ.1 ) THEN
               INFO = 4
            ELSE IF( INFO.EQ.2 ) THEN
               INFO = 3
            END IF
            RETURN
         END IF
C
         WRKOPT = MAX( WRKOPT, DWORK(KRW) + DBLE( KRW-1 ) )
C
C        Add the contribution of BQ'*X*BQ.
C
C        Workspace needed:      N*(N+M).
C
         KTAU = NQ*NQ + 1
         CALL DLACPY( 'Full', NQ, M, B, LDB, DWORK(KTAU), NQ )
         CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', NQ, M,
     $               ONE, DWORK(KU), NQ, DWORK(KTAU), NQ )
         IF( NR.GT.0 )
     $      S2NORM = DLANGE( 'Frobenius', P, M, D, LDD, DWORK )
         S2NORM = DLAPY2( S2NORM, DLANGE( 'Frobenius', NQ, M,
     $                                    DWORK(KTAU), NQ, DWORK )
     $                               / SCALE )
      END IF
C
      AB13BD = S2NORM
C
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of AB13BD ***
      END