File: AB13CD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (601 lines) | stat: -rw-r--r-- 18,716 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
      DOUBLE PRECISION FUNCTION AB13CD( N, M, NP, A, LDA, B, LDB, C,
     $                                  LDC, D, LDD, TOL, IWORK, DWORK,
     $                                  LDWORK, CWORK, LCWORK, BWORK,
     $                                  INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the H-infinity norm of the continuous-time stable
C     system
C
C                          | A | B |
C                   G(s) = |---|---| .
C                          | C | D |
C
C     FUNCTION VALUE
C
C     AB13CD  DOUBLE PRECISION
C             If INFO = 0, the H-infinity norm of the system, HNORM,
C             i.e., the peak gain of the frequency response (as measured
C             by the largest singular value in the MIMO case).
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the system.  N >= 0.
C
C     M       (input) INTEGER
C             The column size of the matrix B.  M >= 0.
C
C     NP      (input) INTEGER
C             The row size of the matrix C.  NP >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             system state matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             system input matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading NP-by-N part of this array must contain the
C             system output matrix C.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= max(1,NP).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading NP-by-M part of this array must contain the
C             system input/output matrix D.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= max(1,NP).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             Tolerance used to set the accuracy in determining the
C             norm.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension N
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal value
C             of LDWORK, and DWORK(2) contains the frequency where the
C             gain of the frequency response achieves its peak value
C             HNORM.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= max(2,4*N*N+2*M*M+3*M*N+M*NP+2*(N+NP)*NP+10*N+
C                             6*max(M,NP)).
C             For good performance, LDWORK must generally be larger.
C
C     CWORK   COMPLEX*16 array, dimension (LCWORK)
C             On exit, if INFO = 0, CWORK(1) contains the optimal value
C             of LCWORK.
C
C     LCWORK  INTEGER
C             The dimension of the array CWORK.
C             LCWORK >= max(1,(N+M)*(N+NP)+3*max(M,NP)).
C             For good performance, LCWORK must generally be larger.
C
C     BWORK   LOGICAL array, dimension (2*N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the system is unstable;
C             = 2:  the tolerance is too small (the algorithm for
C                   computing the H-infinity norm did not converge);
C             = 3:  errors in computing the eigenvalues of A or of the
C                   Hamiltonian matrix (the QR algorithm did not
C                   converge);
C             = 4:  errors in computing singular values.
C
C     METHOD
C
C     The routine implements the method presented in [1].
C
C     REFERENCES
C
C     [1] Bruinsma, N.A. and Steinbuch, M.
C         A fast algorithm to compute the Hinfinity-norm of a transfer
C         function matrix.
C         Systems & Control Letters, vol. 14, pp. 287-293, 1990.
C
C     NUMERICAL ASPECTS
C
C     If the algorithm does not converge (INFO = 2), the tolerance must
C     be increased.
C
C     CONTRIBUTORS
C
C     P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, May 1999.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Aug. 1999,
C     Oct. 2000.
C     P.Hr. Petkov, October 2000.
C     A. Varga, October 2000.
C     Oct. 2001, V. Sima, Research Institute for Informatics, Bucharest.
C
C     KEYWORDS
C
C     H-infinity optimal control, robust control, system norm.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 10 )
      COMPLEX*16         CONE, JIMAG
      PARAMETER          ( CONE  = ( 1.0D0, 0.0D0 ),
     $                     JIMAG = ( 0.0D0, 1.0D0 ) )
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
      DOUBLE PRECISION   HUGE
      PARAMETER          ( HUGE = 10.0D+0**30 )
C     ..
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDC, LCWORK, LDD, LDWORK, M, N,
     $                   NP
      DOUBLE PRECISION   TOL
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      COMPLEX*16         CWORK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), DWORK( * )
      LOGICAL            BWORK( * )
C     ..
C     .. Local Scalars ..
      INTEGER            I, ICW2, ICW3, ICW4, ICWRK, INFO2, ITER, IW10,
     $                   IW11, IW12, IW2, IW3, IW4, IW5, IW6, IW7, IW8,
     $                   IW9, IWRK, J, K, L, LCWAMX, LWAMAX, MINCWR,
     $                   MINWRK, SDIM
      DOUBLE PRECISION   DEN, FPEAK, GAMMA, GAMMAL, GAMMAU, OMEGA, RAT,
     $                   RATMAX, TEMP, WIMAX, WRMIN
      LOGICAL            COMPLX
C
C     .. External Functions ..
      DOUBLE PRECISION   DLAPY2
      LOGICAL            SB02MV, SB02CX
      EXTERNAL           DLAPY2, SB02MV, SB02CX
C     ..
C     .. External Subroutines ..
      EXTERNAL           DGEES, DGEMM, DGESV, DGESVD, DLACPY, DPOSV,
     $                   DPOTRF, DPOTRS, DSYRK, MA02ED, MB01RX, XERBLA,
     $                   ZGEMM, ZGESV, ZGESVD
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, MAX, MIN
C     ..
C     .. Executable Statements ..
C
C     Test the input scalar parameters.
C
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( NP.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
         INFO = -9
      ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
         INFO = -11
      END IF
C
C     Compute workspace.
C
      MINWRK =  MAX( 2, 4*N*N + 2*M*M + 3*M*N + M*NP + 2*( N + NP )*NP +
     $                  10*N + 6*MAX( M, NP ) )
      IF( LDWORK.LT.MINWRK ) THEN
         INFO = -15
      END IF
      MINCWR = MAX( 1, ( N + M )*( N + NP ) + 3*MAX( M, NP ) )
      IF( LCWORK.LT.MINCWR ) THEN
         INFO = -17
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'AB13CD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( M.EQ.0 .OR. NP.EQ.0 ) RETURN
C
C     Workspace usage.
C
      IW2  = N
      IW3  = IW2 + N
      IW4  = IW3 + N*N
      IW5  = IW4 + N*M
      IW6  = IW5 + NP*M
      IWRK = IW6 + MIN( NP, M )
C
C     Determine the maximum singular value of G(infinity) = D .
C
      CALL DLACPY( 'Full', NP, M, D, LDD, DWORK( IW5+1 ), NP )
      CALL DGESVD( 'N', 'N', NP, M, DWORK( IW5+1 ), NP, DWORK( IW6+1 ),
     $             DWORK, NP, DWORK, M, DWORK( IWRK+1 ), LDWORK-IWRK,
     $             INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 4
         RETURN
      END IF
      GAMMAL = DWORK( IW6+1 )
      FPEAK  = HUGE
      LWAMAX = INT( DWORK( IWRK+1 ) ) + IWRK
C
C     Quick return if N = 0 .
C
      IF( N.EQ.0 ) THEN
         AB13CD   = GAMMAL
         DWORK(1) = TWO
         DWORK(2) = ZERO
         CWORK(1) = ONE
         RETURN
      END IF
C
C     Stability check.
C
      CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IW3+1 ), N )
      CALL DGEES( 'N', 'S', SB02MV, N, DWORK( IW3+1 ), N, SDIM, DWORK,
     $            DWORK( IW2+1 ), DWORK, N, DWORK( IWRK+1 ),
     $            LDWORK-IWRK, BWORK, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 3
         RETURN
      END IF
      IF( SDIM.LT.N ) THEN
         INFO = 1
         RETURN
      END IF
      LWAMAX = MAX( INT( DWORK( IWRK+1 ) ) + IWRK, LWAMAX )
C
C     Determine the maximum singular value of G(0) = -C*inv(A)*B + D .
C
      CALL DLACPY( 'Full', N,  N, A, LDA, DWORK( IW3+1 ), N )
      CALL DLACPY( 'Full', N,  M, B, LDB, DWORK( IW4+1 ), N )
      CALL DLACPY( 'Full', NP, M, D, LDD, DWORK( IW5+1 ), NP )
      CALL DGESV( N, M, DWORK( IW3+1 ), N, IWORK, DWORK( IW4+1 ), N,
     $            INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 1
         RETURN
      END IF
      CALL DGEMM( 'N', 'N', NP, M, N, -ONE, C, LDC, DWORK( IW4+1 ), N,
     $            ONE, DWORK( IW5+1 ), NP )
      CALL DGESVD( 'N', 'N', NP, M, DWORK( IW5+1 ), NP, DWORK( IW6+1 ),
     $             DWORK, NP, DWORK, M, DWORK( IWRK+1 ), LDWORK-IWRK,
     $             INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 4
         RETURN
      END IF
      IF( GAMMAL.LT.DWORK( IW6+1 ) ) THEN
         GAMMAL = DWORK( IW6+1 )
         FPEAK  = ZERO
      END IF
      LWAMAX = MAX( INT( DWORK( IWRK+1 ) ) + IWRK, LWAMAX )
C
C     Find a frequency which is close to the peak frequency.
C
      COMPLX = .FALSE.
      DO 10 I = 1, N
         IF( DWORK( IW2+I ).NE.ZERO ) COMPLX = .TRUE.
   10 CONTINUE
      IF( .NOT.COMPLX ) THEN
         WRMIN = ABS( DWORK( 1 ) )
         DO 20 I = 2, N
            IF( WRMIN.GT.ABS( DWORK( I ) ) ) WRMIN = ABS( DWORK( I ) )
   20    CONTINUE
         OMEGA = WRMIN
      ELSE
         RATMAX = ZERO
         DO 30 I = 1, N
            DEN = DLAPY2( DWORK( I ), DWORK( IW2+I ) )
            RAT = ABS( ( DWORK( IW2+I )/DWORK( I ) )/DEN )
            IF( RATMAX.LT.RAT ) THEN
               RATMAX = RAT
               WIMAX  = DEN
            END IF
   30    CONTINUE
         OMEGA = WIMAX
      END IF
C
C     Workspace usage.
C
      ICW2  = N*N
      ICW3  = ICW2 + N*M
      ICW4  = ICW3 + NP*N
      ICWRK = ICW4 + NP*M
C
C     Determine the maximum singular value of
C     G(omega) = C*inv(j*omega*In - A)*B + D .
C
      DO 50 J = 1, N
         DO 40 I = 1, N
            CWORK( I+(J-1)*N ) = -A( I, J )
   40    CONTINUE
         CWORK( J+(J-1)*N ) = JIMAG*OMEGA - A( J, J )
   50 CONTINUE
      DO 70 J = 1, M
         DO 60 I = 1, N
            CWORK( ICW2+I+(J-1)*N ) = B( I, J )
   60    CONTINUE
   70 CONTINUE
      DO 90 J = 1, N
         DO 80 I = 1, NP
            CWORK( ICW3+I+(J-1)*NP ) = C( I, J )
   80    CONTINUE
   90 CONTINUE
      DO 110 J = 1, M
         DO 100 I = 1, NP
            CWORK( ICW4+I+(J-1)*NP ) = D( I, J )
  100    CONTINUE
  110 CONTINUE
      CALL ZGESV( N, M, CWORK, N, IWORK, CWORK( ICW2+1 ), N, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 1
         RETURN
      END IF
      CALL ZGEMM( 'N', 'N', NP, M, N, CONE, CWORK( ICW3+1 ), NP,
     $            CWORK( ICW2+1 ), N, CONE, CWORK( ICW4+1 ), NP )
      CALL ZGESVD( 'N', 'N', NP, M, CWORK( ICW4+1 ), NP, DWORK( IW6+1 ),
     $             CWORK, NP, CWORK, M, CWORK( ICWRK+1 ), LCWORK-ICWRK,
     $             DWORK( IWRK+1 ), INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 4
         RETURN
      END IF
      IF( GAMMAL.LT.DWORK( IW6+1 ) ) THEN
         GAMMAL = DWORK( IW6+1 )
         FPEAK  = OMEGA
      END IF
      LCWAMX = INT( CWORK( ICWRK+1 ) ) + ICWRK
C
C     Workspace usage.
C
      IW2  = M*N
      IW3  = IW2  + M*M
      IW4  = IW3  + NP*NP
      IW5  = IW4  + M*M
      IW6  = IW5  + M*N
      IW7  = IW6  + M*N
      IW8  = IW7  + NP*NP
      IW9  = IW8  + NP*N
      IW10 = IW9  + 4*N*N
      IW11 = IW10 + 2*N
      IW12 = IW11 + 2*N
      IWRK = IW12 + MIN( NP, M )
C
C     Compute D'*C .
C
      CALL DGEMM( 'T', 'N', M, N, NP, ONE, D, LDD, C, LDC, ZERO,
     $            DWORK, M )
C
C     Compute D'*D .
C
      CALL DSYRK( 'U', 'T', M, NP, ONE, D, LDD, ZERO, DWORK( IW2+1 ),
     $            M )
C
C     Compute D*D' .
C
      CALL DSYRK( 'U', 'N', NP, M, ONE, D, LDD, ZERO, DWORK( IW3+1 ),
     $            NP )
C
C     Main iteration loop for gamma.
C
      ITER = 0
  120 ITER = ITER + 1
      IF( ITER.GT.MAXIT ) THEN
         INFO = 2
         RETURN
      END IF
      GAMMA = ( ONE + TWO*TOL )*GAMMAL
C
C     Compute R = GAMMA^2*Im - D'*D .
C
      DO 140 J = 1, M
         DO 130 I = 1, J
            DWORK( IW4+I+(J-1)*M ) = -DWORK( IW2+I+(J-1)*M )
  130    CONTINUE
         DWORK( IW4+J+(J-1)*M ) = GAMMA**2 - DWORK( IW2+J+(J-1)*M )
  140 CONTINUE
C
C     Compute inv(R)*D'*C .
C
      CALL DLACPY( 'Full', M, N, DWORK, M, DWORK( IW5+1 ), M )
      CALL DPOTRF( 'U', M, DWORK( IW4+1 ), M, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 2
         RETURN
      END IF
      CALL DPOTRS( 'U', M, N, DWORK( IW4+1 ), M, DWORK( IW5+1 ), M,
     $             INFO2 )
C
C     Compute inv(R)*B' .
C
      DO 160 J = 1, N
         DO 150 I = 1, M
            DWORK( IW6+I+(J-1)*M ) = B( J, I )
  150    CONTINUE
  160 CONTINUE
      CALL DPOTRS( 'U', M, N, DWORK( IW4+1 ), M, DWORK( IW6+1 ), M,
     $             INFO2 )
C
C     Compute S = GAMMA^2*Ip - D*D' .
C
      DO 180 J = 1, NP
         DO 170 I = 1, J
            DWORK( IW7+I+(J-1)*NP ) = -DWORK( IW3+I+(J-1)*NP )
  170    CONTINUE
         DWORK( IW7+J+(J-1)*NP ) = GAMMA**2 - DWORK( IW3+J+(J-1)*NP )
  180 CONTINUE
C
C     Compute inv(S)*C .
C
      CALL DLACPY( 'Full', NP, N, C, LDC, DWORK( IW8+1 ), NP )
      CALL DPOSV( 'U', NP, N, DWORK( IW7+1 ), NP, DWORK( IW8+1 ), NP,
     $            INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 2
         RETURN
      END IF
C
C     Construct the Hamiltonian matrix .
C
      CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IW9+1 ), 2*N )
      CALL DGEMM( 'N', 'N', N, N, M, ONE, B, LDB, DWORK( IW5+1 ), M,
     $            ONE, DWORK( IW9+1 ), 2*N )
      CALL MB01RX( 'Left', 'Upper', 'Transpose', N, NP, ZERO, -GAMMA,
     $             DWORK( IW9+N+1 ), 2*N, C, LDC, DWORK( IW8+1 ), NP,
     $             INFO2 )
      CALL MA02ED( 'Upper', N, DWORK( IW9+N+1 ), 2*N )
      CALL MB01RX( 'Left', 'Upper', 'NoTranspose', N, M, ZERO, GAMMA,
     $             DWORK( IW9+2*N*N+1 ), 2*N, B, LDB, DWORK( IW6+1 ), M,
     $             INFO2 )
      CALL MA02ED( 'Upper', N, DWORK( IW9+2*N*N+1 ), 2*N )
      DO 200 J = 1, N
         DO 190 I = 1, N
            DWORK( IW9+2*N*N+N+I+(J-1)*2*N ) = -DWORK( IW9+J+(I-1)*2*N )
  190    CONTINUE
  200 CONTINUE
C
C     Compute the eigenvalues of the Hamiltonian matrix.
C
      CALL DGEES( 'N', 'S', SB02CX, 2*N, DWORK( IW9+1 ), 2*N, SDIM,
     $            DWORK( IW10+1 ), DWORK( IW11+1 ), DWORK, 2*N,
     $            DWORK( IWRK+1 ), LDWORK-IWRK, BWORK, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 3
         RETURN
      END IF
      LWAMAX = MAX( INT( DWORK( IWRK+1 ) ) + IWRK, LWAMAX )
C
      IF( SDIM.EQ.0 ) THEN
         GAMMAU = GAMMA
         GO TO 330
      END IF
C
C     Store the positive imaginary parts.
C
      J = 0
      DO 210 I = 1, SDIM-1, 2
         J = J + 1
         DWORK( IW10+J ) = DWORK( IW11+I )
  210 CONTINUE
      K = J
C
      IF( K.GE.2 ) THEN
C
C        Reorder the imaginary parts.
C
         DO 230 J = 1, K-1
            DO 220 L = J+1, K
               IF( DWORK( IW10+J ).LE. DWORK( IW10+L ) ) GO TO 220
                  TEMP = DWORK( IW10+J )
                  DWORK( IW10+J ) = DWORK( IW10+L )
                  DWORK( IW10+L ) = TEMP
  220       CONTINUE
  230    CONTINUE
C
C        Determine the next frequency.
C
         DO 320 L = 1, K - 1
            OMEGA = ( DWORK( IW10+L ) + DWORK( IW10+L+1 ) )/TWO
            DO 250 J = 1, N
               DO 240 I = 1, N
                  CWORK( I+(J-1)*N ) = -A( I, J )
  240          CONTINUE
               CWORK( J+(J-1)*N ) = JIMAG*OMEGA - A( J, J )
  250       CONTINUE
            DO 270 J = 1, M
               DO 260 I = 1, N
                  CWORK( ICW2+I+(J-1)*N ) = B( I, J )
  260          CONTINUE
  270       CONTINUE
            DO 290 J = 1, N
               DO 280 I = 1, NP
                  CWORK( ICW3+I+(J-1)*NP ) = C( I, J )
  280          CONTINUE
  290       CONTINUE
            DO 310 J = 1, M
               DO 300 I = 1, NP
                  CWORK( ICW4+I+(J-1)*NP ) = D( I, J )
  300          CONTINUE
  310       CONTINUE
            CALL ZGESV( N, M, CWORK, N, IWORK, CWORK( ICW2+1 ), N,
     $                  INFO2 )
            IF( INFO2.GT.0 ) THEN
               INFO = 1
               RETURN
            END IF
            CALL ZGEMM( 'N', 'N', NP, M, N, CONE, CWORK( ICW3+1 ), NP,
     $                   CWORK( ICW2+1 ), N, CONE, CWORK( ICW4+1 ), NP )
            CALL ZGESVD( 'N', 'N', NP, M, CWORK( ICW4+1 ), NP,
     $                   DWORK( IW6+1 ), CWORK, NP, CWORK, M,
     $                   CWORK( ICWRK+1 ), LCWORK-ICWRK,
     $                   DWORK( IWRK+1 ), INFO2 )
            IF( INFO2.GT.0 ) THEN
               INFO = 4
               RETURN
            END IF
            IF( GAMMAL.LT.DWORK( IW6+1 ) ) THEN
               GAMMAL = DWORK( IW6+1 )
               FPEAK  = OMEGA
            END IF
            LCWAMX = MAX( INT( CWORK( ICWRK+1 ) ) + ICWRK, LCWAMX )
  320    CONTINUE
      END IF
      GO TO 120
  330 AB13CD = ( GAMMAL + GAMMAU )/TWO
C
      DWORK( 1 ) = LWAMAX
      DWORK( 2 ) = FPEAK
      CWORK( 1 ) = LCWAMX
      RETURN
C *** End of AB13CD ***
      END