File: AB13DX.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (544 lines) | stat: -rw-r--r-- 18,981 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
      DOUBLE PRECISION FUNCTION AB13DX( DICO, JOBE, JOBD, N, M, P,
     $                                  OMEGA, A, LDA, E, LDE, B, LDB,
     $                                  C, LDC, D, LDD, IWORK, DWORK,
     $                                  LDWORK, CWORK, LCWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the maximum singular value of a given continuous-time
C     or discrete-time transfer-function matrix, either standard or in
C     the descriptor form,
C
C                                     -1
C        G(lambda) = C*( lambda*E - A ) *B + D ,
C
C     for a given complex value lambda, where lambda = j*omega, in the
C     continuous-time case, and lambda = exp(j*omega), in the
C     discrete-time case. The matrices A, E, B, C, and D are real
C     matrices of appropriate dimensions. Matrix A must be in an upper
C     Hessenberg form, and if JOBE ='G', the matrix E must be upper
C     triangular. The matrices B and C must correspond to the system
C     in (generalized) Hessenberg form.
C
C     FUNCTION VALUE
C
C     AB13DX   DOUBLE PRECISION
C              The maximum singular value of G(lambda).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the system, as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     JOBE    CHARACTER*1
C             Specifies whether E is an upper triangular or an identity
C             matrix, as follows:
C             = 'G':  E is a general upper triangular matrix;
C             = 'I':  E is the identity matrix.
C
C     JOBD    CHARACTER*1
C             Specifies whether or not a non-zero matrix D appears in
C             the given state space model:
C             = 'D':  D is present;
C             = 'Z':  D is assumed a zero matrix.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the system.  N >= 0.
C
C     M       (input) INTEGER
C             The column size of the matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The row size of the matrix C.  P >= 0.
C
C     OMEGA   (input) DOUBLE PRECISION
C             The frequency value for which the calculations should be
C             done.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N upper Hessenberg part of this
C             array must contain the state dynamics matrix A in upper
C             Hessenberg form. The elements below the subdiagonal are
C             not referenced.
C             On exit, if M > 0, P > 0, OMEGA = 0, DICO = 'C', B <> 0,
C             and C <> 0, the leading N-by-N upper Hessenberg part of
C             this array contains the factors L and U from the LU
C             factorization of A (A = P*L*U); the unit diagonal elements
C             of L are not stored, L is lower bidiagonal, and P is
C             stored in IWORK (see SLICOT Library routine MB02SD).
C             Otherwise, this array is unchanged on exit.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     E       (input) DOUBLE PRECISION array, dimension (LDE,N)
C             If JOBE = 'G', the leading N-by-N upper triangular part of
C             this array must contain the upper triangular descriptor
C             matrix E of the system. The elements of the strict lower
C             triangular part of this array are not referenced.
C             If JOBE = 'I', then E is assumed to be the identity
C             matrix and is not referenced.
C
C     LDE     INTEGER
C             The leading dimension of the array E.
C             LDE >= MAX(1,N), if JOBE = 'G';
C             LDE >= 1,        if JOBE = 'I'.
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the system input matrix B.
C             On exit, if M > 0, P > 0, OMEGA = 0, DICO = 'C', B <> 0,
C             C <> 0, and INFO = 0 or N+1, the leading N-by-M part of
C             this array contains the solution of the system A*X = B.
C             Otherwise, this array is unchanged on exit.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading P-by-N part of this array must contain the
C             system output matrix C.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= max(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, if JOBD = 'D', the leading P-by-M part of this
C             array must contain the direct transmission matrix D.
C             On exit, if (N = 0, or B = 0, or C = 0) and JOBD = 'D',
C             or (OMEGA = 0, DICO = 'C', JOBD = 'D', and INFO = 0 or
C             N+1), the contents of this array is destroyed.
C             Otherwise, this array is unchanged on exit.
C             This array is not referenced if JOBD = 'Z'.
C
C     LDD     INTEGER
C             The leading dimension of array D.
C             LDD >= MAX(1,P), if JOBD = 'D';
C             LDD >= 1,        if JOBD = 'Z'.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK), where
C             LIWORK = N, if N > 0, M > 0, P > 0, B <> 0, and C <> 0;
C             LIWORK = 0, otherwise.
C             This array contains the pivot indices in the LU
C             factorization of the matrix lambda*E - A; for 1 <= i <= N,
C             row i of the matrix was interchanged with row IWORK(i).
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal value
C             of LDWORK, and DWORK(2), ..., DWORK(MIN(P,M)) contain the
C             singular values of G(lambda), except for the first one,
C             which is returned in the function value AB13DX.
C             If (N = 0, or B = 0, or C = 0) and JOBD = 'Z', the last
C             MIN(P,M)-1 zero singular values of G(lambda) are not
C             stored in DWORK(2), ..., DWORK(MIN(P,M)).
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= MAX(1, LDW1 + LDW2 ),
C             LDW1 = P*M, if N > 0, B <> 0, C <> 0, OMEGA = 0,
C                            DICO = 'C', and JOBD = 'Z';
C             LDW1 = 0,   otherwise;
C             LDW2 = MIN(P,M) + MAX(3*MIN(P,M) + MAX(P,M), 5*MIN(P,M)),
C                         if (N = 0, or B = 0, or C = 0) and JOBD = 'D',
C                         or (N > 0, B <> 0, C <> 0, OMEGA = 0, and
C                             DICO = 'C');
C             LDW2 = 0,   if (N = 0, or B = 0, or C = 0) and JOBD = 'Z',
C                         or MIN(P,M) = 0;
C             LDW2 = 6*MIN(P,M), otherwise.
C             For good performance, LDWORK must generally be larger.
C
C     CWORK   COMPLEX*16 array, dimension (LCWORK)
C             On exit, if INFO = 0, CWORK(1) contains the optimal
C             LCWORK.
C
C     LCWORK  INTEGER
C             The dimension of the array CWORK.
C             LCWORK >= 1, if N = 0, or B = 0, or C = 0, or (OMEGA = 0
C                             and DICO = 'C') or MIN(P,M) = 0;
C             LCWORK >= MAX(1, (N+M)*(N+P) + 2*MIN(P,M) + MAX(P,M)),
C                          otherwise.
C             For good performance, LCWORK must generally be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, U(i,i) is exactly zero; the LU
C                   factorization of the matrix lambda*E - A has been
C                   completed, but the factor U is exactly singular,
C                   i.e., the matrix lambda*E - A is exactly singular;
C             = N+1:  the SVD algorithm for computing singular values
C                   did not converge.
C
C     METHOD
C
C     The routine implements standard linear algebra calculations,
C     taking problem structure into account. LAPACK Library routines
C     DGESVD and ZGESVD are used for finding the singular values.
C
C     CONTRIBUTORS
C
C     D. Sima, University of Bucharest, May 2001.
C     V. Sima, Research Institute for Informatics, Bucharest, May 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Sep. 2005.
C
C     KEYWORDS
C
C     H-infinity optimal control, robust control, system norm.
C
C     ******************************************************************
C
C     .. Parameters ..
      COMPLEX*16         CONE
      PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          DICO, JOBD, JOBE
      INTEGER            INFO, LCWORK, LDA, LDB, LDC, LDD, LDE, LDWORK,
     $                   M, N, P
      DOUBLE PRECISION   OMEGA
C     ..
C     .. Array Arguments ..
      COMPLEX*16         CWORK(  * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), DWORK(  * ), E( LDE, * )
      INTEGER            IWORK(  * )
C     ..
C     .. Local Scalars ..
      LOGICAL            DISCR, FULLE, NODYN, SPECL, WITHD
      INTEGER            I, ICB, ICC, ICD, ICWK, ID, IERR, IS, IWRK, J,
     $                   MAXWRK, MINCWR, MINPM, MINWRK
      DOUBLE PRECISION   BNORM, CNORM, LAMBDI, LAMBDR, UPD
C
C     .. External Functions ..
      DOUBLE PRECISION   DLANGE
      LOGICAL            LSAME
      EXTERNAL           DLANGE, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL           DGEMM, DGESVD, MB02RD, MB02RZ, MB02SD, MB02SZ,
     $                   XERBLA, ZGEMM, ZGESVD, ZLACP2
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          COS, DCMPLX, INT, MAX, MIN, SIN
C     ..
C     .. Executable Statements ..
C
C     Test the input scalar parameters.
C
      INFO  = 0
      DISCR = LSAME( DICO, 'D' )
      FULLE = LSAME( JOBE, 'G' )
      WITHD = LSAME( JOBD, 'D' )
C
      IF( .NOT. ( DISCR .OR. LSAME( DICO, 'C' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( FULLE .OR. LSAME( JOBE, 'I' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT. ( WITHD .OR. LSAME( JOBD, 'Z' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( P.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDE.LT.1 .OR. ( FULLE .AND. LDE.LT.N ) ) THEN
         INFO = -11
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -13
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -15
      ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.P ) ) THEN
         INFO = -17
      ELSE
         BNORM = DLANGE( '1-norm', N, M, B, LDB, DWORK )
         CNORM = DLANGE( '1-norm', P, N, C, LDC, DWORK )
         NODYN = N.EQ.0 .OR. MIN( BNORM, CNORM ).EQ.ZERO
         SPECL = .NOT.NODYN .AND. OMEGA.EQ.ZERO .AND. .NOT.DISCR
         MINPM = MIN( P, M )
C
C        Compute workspace.
C
         IF( MINPM.EQ.0 ) THEN
            MINWRK = 0
         ELSE IF( SPECL .OR. ( NODYN .AND. WITHD ) ) THEN
            MINWRK = MINPM + MAX( 3*MINPM + MAX( P, M ), 5*MINPM )
            IF ( SPECL .AND. .NOT.WITHD )
     $         MINWRK = MINWRK + P*M
         ELSE IF ( NODYN .AND. .NOT.WITHD ) THEN
            MINWRK = 0
         ELSE
            MINWRK = 6*MINPM
         END IF
         MINWRK = MAX( 1, MINWRK )
C
         IF( LDWORK.LT.MINWRK ) THEN
            INFO = -20
         ELSE
            IF ( NODYN .OR. ( OMEGA.EQ.ZERO .AND. .NOT.DISCR ) .OR.
     $           MINPM.EQ.0 ) THEN
               MINCWR = 1
            ELSE
               MINCWR = MAX( 1, ( N + M )*( N + P ) +
     $                          2*MINPM + MAX( P, M ) )
            END IF
            IF( LCWORK.LT.MINCWR )
     $         INFO = -22
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'AB13DX', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MINPM.EQ.0 ) THEN
         AB13DX = ZERO
C
         DWORK( 1 ) = ONE
         CWORK( 1 ) = ONE
         RETURN
      END IF
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.)
C
      IS   = 1
      IWRK = IS + MINPM
C
      IF( NODYN ) THEN
C
C        No dynamics: Determine the maximum singular value of G = D .
C
         IF ( WITHD ) THEN
C
C           Workspace: need   MIN(P,M) + MAX(3*MIN(P,M) + MAX(P,M),
C                                            5*MIN(P,M));
C                      prefer larger.
C
            CALL DGESVD( 'No Vectors', 'No Vectors', P, M, D, LDD,
     $                   DWORK( IS ), DWORK, P, DWORK, M, DWORK( IWRK ),
     $                   LDWORK-IWRK+1, IERR )
            IF( IERR.GT.0 ) THEN
               INFO = N + 1
               RETURN
            END IF
            AB13DX = DWORK( IS )
            MAXWRK = INT( DWORK( IWRK ) ) + IWRK - 1
         ELSE
            AB13DX = ZERO
            MAXWRK = 1
         END IF
C
         DWORK( 1 ) = MAXWRK
         CWORK( 1 ) = ONE
         RETURN
      END IF
C
C     Determine the maximum singular value of
C        G(lambda) = C*inv(lambda*E - A)*B + D.
C     The (generalized) Hessenberg form of the system is used.
C
      IF ( SPECL ) THEN
C
C        Special continuous-time case:
C        Determine the maximum singular value of the real matrix G(0).
C        Workspace: need   MIN(P,M) + MAX(3*MIN(P,M) + MAX(P,M),
C                                         5*MIN(P,M));
C                   prefer larger.
C
         CALL MB02SD( N, A, LDA, IWORK, IERR )
         IF( IERR.GT.0 ) THEN
            INFO = IERR
            DWORK( 1 ) = ONE
            CWORK( 1 ) = ONE
            RETURN
         END IF
         CALL MB02RD( 'No Transpose', N, M, A, LDA, IWORK, B, LDB,
     $                IERR )
         IF ( WITHD ) THEN
            CALL DGEMM(  'No Transpose', 'No Transpose', P, M, N, -ONE,
     $                   C, LDC, B, LDB, ONE, D, LDD )
            CALL DGESVD( 'No Vectors', 'No Vectors', P, M, D, LDD,
     $                   DWORK( IS ), DWORK, P, DWORK, M, DWORK( IWRK ),
     $                   LDWORK-IWRK+1, IERR )
         ELSE
C
C           Additional workspace: need   P*M.
C
            ID   = IWRK
            IWRK = ID + P*M
            CALL DGEMM(  'No Transpose', 'No Transpose', P, M, N, -ONE,
     $                   C, LDC, B, LDB, ZERO, DWORK( ID ), P )
            CALL DGESVD( 'No Vectors', 'No Vectors', P, M, DWORK( ID ),
     $                   P, DWORK( IS ), DWORK, P, DWORK, M,
     $                   DWORK( IWRK ), LDWORK-IWRK+1, IERR )
         END IF
         IF( IERR.GT.0 ) THEN
            INFO = N + 1
            RETURN
         END IF
C
         AB13DX = DWORK( IS )
         DWORK( 1 ) = INT( DWORK( IWRK ) ) + IWRK - 1
         CWORK( 1 ) = ONE
         RETURN
      END IF
C
C     General case: Determine the maximum singular value of G(lambda).
C     Complex workspace:  need   N*N + N*M + P*N + P*M.
C
      ICB  = 1   + N*N
      ICC  = ICB + N*M
      ICD  = ICC + P*N
      ICWK = ICD + P*M
C
      IF ( WITHD ) THEN
         UPD = ONE
      ELSE
         UPD = ZERO
      END IF
C
      IF ( DISCR ) THEN
         LAMBDR = COS( OMEGA )
         LAMBDI = SIN( OMEGA )
C
C        Build lambda*E - A .
C
         IF ( FULLE ) THEN
C
            DO 20 J = 1, N
C
               DO 10 I = 1, J
                  CWORK( I+(J-1)*N ) =
     $               DCMPLX( LAMBDR*E( I, J ) - A( I, J ),
     $                       LAMBDI*E( I, J ) )
   10          CONTINUE
C
               IF( J.LT.N )
     $            CWORK( J+1+(J-1)*N ) = DCMPLX( -A( J+1, J ), ZERO )
   20      CONTINUE
C
         ELSE
C
            DO 40 J = 1, N
C
               DO 30 I = 1, MIN( J+1, N )
                  CWORK( I+(J-1)*N ) = -A( I, J )
   30          CONTINUE
C
               CWORK( J+(J-1)*N ) = DCMPLX( LAMBDR - A( J, J ), LAMBDI )
   40      CONTINUE
C
         END IF
C
      ELSE
C
C        Build j*omega*E - A.
C
         IF ( FULLE ) THEN
C
            DO 60 J = 1, N
C
               DO 50 I = 1, J
                  CWORK( I+(J-1)*N ) =
     $               DCMPLX( -A( I, J ), OMEGA*E( I, J ) )
   50         CONTINUE
C
               IF( J.LT.N )
     $            CWORK( J+1+(J-1)*N ) = DCMPLX( -A( J+1, J ), ZERO )
   60      CONTINUE
C
         ELSE
C
            DO 80 J = 1, N
C
               DO 70 I = 1, MIN( J+1, N )
                  CWORK( I+(J-1)*N ) = -A( I, J )
   70          CONTINUE
C
               CWORK( J+(J-1)*N ) = DCMPLX( -A( J, J ), OMEGA )
   80      CONTINUE
C
         END IF
C
      END IF
C
C     Build G(lambda) .
C
      CALL ZLACP2( 'Full', N, M, B, LDB, CWORK( ICB ), N )
      CALL ZLACP2( 'Full', P, N, C, LDC, CWORK( ICC ), P )
      IF ( WITHD )
     $   CALL ZLACP2( 'Full', P, M, D, LDD, CWORK( ICD ), P )
C
      CALL MB02SZ( N, CWORK, N, IWORK, IERR )
      IF( IERR.GT.0 ) THEN
         INFO = IERR
         DWORK( 1 ) = ONE
         CWORK( 1 ) = ICWK - 1
         RETURN
      END IF
      CALL MB02RZ( 'No Transpose', N, M, CWORK, N, IWORK,
     $             CWORK( ICB ), N, IERR )
      CALL ZGEMM(  'No Transpose', 'No Transpose', P, M, N, CONE,
     $             CWORK( ICC ), P, CWORK( ICB ), N,
     $             DCMPLX( UPD, ZERO ), CWORK( ICD ), P )
C
C     Additional workspace, complex: need   2*MIN(P,M) + MAX(P,M);
C                                    prefer larger;
C                           real:    need   5*MIN(P,M).
C
      CALL ZGESVD( 'No Vectors', 'No Vectors', P, M, CWORK( ICD ), P,
     $             DWORK( IS ), CWORK, P, CWORK, M, CWORK( ICWK ),
     $             LCWORK-ICWK+1, DWORK( IWRK ), IERR )
      IF( IERR.GT.0 ) THEN
         INFO = N + 1
         RETURN
      END IF
      AB13DX = DWORK( IS )
C
      DWORK( 1 ) = 6*MINPM
      CWORK( 1 ) = INT( CWORK( ICWK ) ) + ICWK - 1
C
      RETURN
C *** Last line of AB13DX ***
      END