1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
SUBROUTINE AB13ED( N, A, LDA, LOW, HIGH, TOL, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To estimate beta(A), the 2-norm distance from a real matrix A to
C the nearest complex matrix with an eigenvalue on the imaginary
C axis. The estimate is given as
C
C LOW <= beta(A) <= HIGH,
C
C where either
C
C (1 + TOL) * LOW >= HIGH,
C
C or
C
C LOW = 0 and HIGH = delta,
C
C and delta is a small number approximately equal to the square root
C of machine precision times the Frobenius norm (Euclidean norm)
C of A. If A is stable in the sense that all eigenvalues of A lie
C in the open left half complex plane, then beta(A) is the distance
C to the nearest unstable complex matrix, i.e., the complex
C stability radius.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C LOW (output) DOUBLE PRECISION
C A lower bound for beta(A).
C
C HIGH (output) DOUBLE PRECISION
C An upper bound for beta(A).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C Specifies the accuracy with which LOW and HIGH approximate
C beta(A). If the user sets TOL to be less than SQRT(EPS),
C where EPS is the machine precision (see LAPACK Library
C Routine DLAMCH), then the tolerance is taken to be
C SQRT(EPS).
C The recommended value is TOL = 9, which gives an estimate
C of beta(A) correct to within an order of magnitude.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( 1, 3*N*(N+1) ).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the QR algorithm (LAPACK Library routine DHSEQR)
C fails to converge; this error is very rare.
C
C METHOD
C
C Let beta(A) be the 2-norm distance from a real matrix A to the
C nearest complex matrix with an eigenvalue on the imaginary axis.
C It is known that beta(A) = minimum of the smallest singular
C value of (A - jwI), where I is the identity matrix and j**2 = -1,
C and the minimum is taken over all real w.
C The algorithm computes a lower bound LOW and an upper bound HIGH
C for beta(A) by a bisection method in the following way. Given a
C non-negative real number sigma, the Hamiltonian matrix H(sigma)
C is constructed:
C
C | A -sigma*I | | A G |
C H(sigma) = | | := | | .
C | sigma*I -A' | | F -A' |
C
C It can be shown [1] that H(sigma) has an eigenvalue whose real
C part is zero if and only if sigma >= beta. Any lower and upper
C bounds on beta(A) can be improved by choosing a number between
C them and checking to see if H(sigma) has an eigenvalue with zero
C real part. This decision is made by computing the eigenvalues of
C H(sigma) using the square reduced algorithm of Van Loan [2].
C
C REFERENCES
C
C [1] Byers, R.
C A bisection method for measuring the distance of a stable
C matrix to the unstable matrices.
C SIAM J. Sci. Stat. Comput., Vol. 9, No. 5, pp. 875-880, 1988.
C
C [2] Van Loan, C.F.
C A symplectic method for approximating all the eigenvalues of a
C Hamiltonian matrix.
C Linear Algebra and its Applications, Vol 61, 233-251, 1984.
C
C NUMERICAL ASPECTS
C
C Due to rounding errors the computed values of LOW and HIGH can be
C proven to satisfy
C
C LOW - p(n) * sqrt(e) * norm(A) <= beta(A)
C and
C beta(A) <= HIGH + p(n) * sqrt(e) * norm(A),
C
C where p(n) is a modest polynomial of degree 3, e is the machine
C precision and norm(A) is the Frobenius norm of A, see [1].
C The recommended value for TOL is 9 which gives an estimate of
C beta(A) correct to within an order of magnitude.
C AB13ED requires approximately 38*N**3 flops for TOL = 9.
C
C CONTRIBUTOR
C
C R. Byers, the routines BISEC and BISEC0 (January, 1995).
C
C REVISIONS
C
C Release 4.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1999.
C V. Sima, Research Institute for Informatics, Bucharest, Jan. 2003.
C
C KEYWORDS
C
C Distances, eigenvalue, eigenvalue perturbation, norms, stability
C radius.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
DOUBLE PRECISION HIGH, LOW, TOL
INTEGER INFO, LDA, LDWORK, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*)
C .. Local Scalars ..
INTEGER I, IA2, IAA, IGF, IHI, ILO, IWI, IWK, IWR,
$ JWORK, MINWRK, N2
DOUBLE PRECISION ANRM, SEPS, SFMN, SIGMA, TAU, TEMP, TOL1, TOL2
LOGICAL RNEG, SUFWRK
C .. Local Arrays ..
DOUBLE PRECISION DUMMY(1), DUMMY2(1,1)
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE
C .. External Subroutines ..
EXTERNAL DCOPY, DGEBAL, DGEMM, DHSEQR, DLACPY, DSYMM,
$ DSYMV, MA02ED, MB04ZD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, SQRT
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
MINWRK = 3*N*( N + 1 )
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
ELSE IF( LDWORK.LT.MAX( 1, MINWRK ) ) THEN
INFO = -8
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB13ED', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
LOW = ZERO
IF ( N.EQ.0 ) THEN
HIGH = ZERO
DWORK(1) = ONE
RETURN
END IF
C
C Indices for splitting the work array.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.)
C
N2 = N*N
IGF = 1
IA2 = IGF + N2 + N
IAA = IA2 + N2
IWK = IAA + N2
IWR = IAA
IWI = IWR + N
C
SUFWRK = LDWORK-IWK.GE.N2
C
C Computation of the tolerances and the threshold for termination of
C the bisection method. SEPS is the square root of the machine
C precision.
C
SFMN = DLAMCH( 'Safe minimum' )
SEPS = SQRT( DLAMCH( 'Epsilon' ) )
TAU = ONE + MAX( TOL, SEPS )
ANRM = DLANGE( 'Frobenius', N, N, A, LDA, DWORK )
TOL1 = SEPS * ANRM
TOL2 = TOL1 * DBLE( 2*N )
C
C Initialization of the bisection method.
C
HIGH = ANRM
C
C WHILE ( HIGH > TAU*MAX( TOL1, LOW ) ) DO
10 IF ( HIGH.GT.( TAU*MAX( TOL1, LOW ) ) ) THEN
SIGMA = SQRT( HIGH ) * SQRT( MAX( TOL1, LOW ) )
C
C Set up H(sigma).
C Workspace: N*(N+1)+2*N*N.
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK(IAA), N )
DWORK(IGF) = SIGMA
DWORK(IGF+N) = -SIGMA
DUMMY(1) = ZERO
CALL DCOPY( N-1, DUMMY, 0, DWORK(IGF+1), 1 )
C
DO 20 I = IGF, IA2 - N - 2, N + 1
CALL DCOPY( N+1, DWORK(I), 1, DWORK(I+N+1), 1 )
20 CONTINUE
C
C Computation of the eigenvalues by the square reduced algorithm.
C Workspace: N*(N+1)+2*N*N+2*N.
C
CALL MB04ZD( 'No vectors', N, DWORK(IAA), N, DWORK(IGF), N,
$ DUMMY2, 1, DWORK(IWK), INFO )
C
C Form the matrix A*A + F*G.
C Workspace: need N*(N+1)+2*N*N+N;
C prefer N*(N+1)+3*N*N.
C
JWORK = IA2
IF ( SUFWRK )
$ JWORK = IWK
C
CALL DLACPY( 'Lower', N, N, DWORK(IGF), N, DWORK(JWORK), N )
CALL MA02ED( 'Lower', N, DWORK(JWORK), N )
C
IF ( SUFWRK ) THEN
C
C Use BLAS 3 calculation.
C
CALL DSYMM( 'Left', 'Upper', N, N, ONE, DWORK(IGF+N), N,
$ DWORK(JWORK), N, ZERO, DWORK(IA2), N )
ELSE
C
C Use BLAS 2 calculation.
C
DO 30 I = 1, N
CALL DSYMV( 'Upper', N, ONE, DWORK(IGF+N), N,
$ DWORK(IA2+N*(I-1)), 1, ZERO, DWORK(IWK), 1 )
CALL DCOPY( N, DWORK(IWK), 1, DWORK(IA2+N*(I-1)), 1 )
30 CONTINUE
C
END IF
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', N, N, N, ONE,
$ DWORK(IAA), N, DWORK(IAA), N, ONE, DWORK(IA2), N )
C
C Find the eigenvalues of A*A + F*G.
C Workspace: N*(N+1)+N*N+3*N.
C
JWORK = IWI + N
CALL DGEBAL( 'Scale', N, DWORK(IA2), N, ILO, IHI, DWORK(JWORK),
$ I )
CALL DHSEQR( 'Eigenvalues', 'NoSchurVectors', N, ILO, IHI,
$ DWORK(IA2), N, DWORK(IWR), DWORK(IWI), DUMMY2, 1,
$ DWORK(JWORK), N, INFO )
C
IF ( INFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
C
C (DWORK(IWR+i), DWORK(IWI+i)), i = 0,...,N-1, contain the
C squares of the eigenvalues of H(sigma).
C
I = 0
RNEG = .FALSE.
C WHILE ( ( DWORK(IWR+i),DWORK(IWI+i) ) not real positive
C .AND. I < N ) DO
40 IF ( .NOT.RNEG .AND. I.LT.N ) THEN
TEMP = ABS( DWORK(IWI+I) )
IF ( TOL1.GT.SFMN ) TEMP = TEMP / TOL1
RNEG = ( ( DWORK(IWR+I).LT.ZERO ) .AND. ( TEMP.LE.TOL2 ) )
I = I + 1
GO TO 40
C END WHILE 40
END IF
IF ( RNEG ) THEN
HIGH = SIGMA
ELSE
LOW = SIGMA
END IF
GO TO 10
C END WHILE 10
END IF
C
C Set optimal workspace dimension.
C
DWORK(1) = DBLE( MAX( 4*N2 + N, MINWRK ) )
C
C *** Last line of AB13ED ***
END
|