File: AB13FD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (403 lines) | stat: -rw-r--r-- 13,516 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
      SUBROUTINE AB13FD( N, A, LDA, BETA, OMEGA, TOL, DWORK, LDWORK,
     $                   CWORK, LCWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute beta(A), the 2-norm distance from a real matrix A to
C     the nearest complex matrix with an eigenvalue on the imaginary
C     axis. If A is stable in the sense that all eigenvalues of A lie
C     in the open left half complex plane, then beta(A) is the complex
C     stability radius, i.e., the distance to the nearest unstable
C     complex matrix. The value of beta(A) is the minimum of the
C     smallest singular value of (A - jwI), taken over all real w.
C     The value of w corresponding to the minimum is also computed.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             matrix A.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     BETA    (output) DOUBLE PRECISION
C             The computed value of beta(A), which actually is an upper
C             bound.
C
C     OMEGA   (output) DOUBLE PRECISION
C             The value of w such that the smallest singular value of
C             (A - jwI) equals beta(A).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             Specifies the accuracy with which beta(A) is to be
C             calculated. (See the Numerical Aspects section below.)
C             If the user sets TOL to be less than EPS, where EPS is the
C             machine precision (see LAPACK Library Routine DLAMCH),
C             then the tolerance is taken to be EPS.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C             If DWORK(1) is not needed, the first 2*N*N entries of
C             DWORK may overlay CWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX( 1, 3*N*(N+2) ).
C             For optimum performance LDWORK should be larger.
C
C     CWORK   COMPLEX*16 array, dimension (LCWORK)
C             On exit, if INFO = 0, CWORK(1) returns the optimal value
C             of LCWORK.
C             If CWORK(1) is not needed, the first N*N entries of
C             CWORK may overlay DWORK.
C
C     LCWORK  INTEGER
C             The length of the array CWORK.
C             LCWORK >= MAX( 1, N*(N+3) ).
C             For optimum performance LCWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the routine fails to compute beta(A) within the
C                   specified tolerance. Nevertheless, the returned
C                   value is an upper bound on beta(A);
C             = 2:  either the QR or SVD algorithm (LAPACK Library
C                   routines DHSEQR, DGESVD or ZGESVD) fails to
C                   converge; this error is very rare.
C
C     METHOD
C
C     AB13FD combines the methods of [1] and [2] into a provably
C     reliable, quadratically convergent algorithm. It uses the simple
C     bisection strategy of [1] to find an interval which contains
C     beta(A), and then switches to the modified bisection strategy of
C     [2] which converges quadratically to a minimizer. Note that the
C     efficiency of the strategy degrades if there are several local
C     minima that are near or equal the global minimum.
C
C     REFERENCES
C
C     [1] Byers, R.
C         A bisection method for measuring the distance of a stable
C         matrix to the unstable matrices.
C         SIAM J. Sci. Stat. Comput., Vol. 9, No. 5, pp. 875-880, 1988.
C
C     [2] Boyd, S. and Balakrishnan, K.
C         A regularity result for the singular values of a transfer
C         matrix and a quadratically convergent algorithm for computing
C         its L-infinity norm.
C         Systems and Control Letters, Vol. 15, pp. 1-7, 1990.
C
C     NUMERICAL ASPECTS
C
C     In the presence of rounding errors, the computed function value
C     BETA  satisfies
C
C           beta(A) <= BETA + epsilon,
C
C           BETA/(1+TOL) - delta <= MAX(beta(A), SQRT(2*N*EPS)*norm(A)),
C
C     where norm(A) is the Frobenius norm of A,
C
C           epsilon = p(N) * EPS * norm(A),
C     and
C           delta   = p(N) * SQRT(EPS) * norm(A),
C
C     and p(N) is a low degree polynomial. It is recommended to choose
C     TOL greater than SQRT(EPS). Although rounding errors can cause
C     AB13FD to fail for smaller values of TOL, nevertheless, it usually
C     succeeds. Regardless of success or failure, the first inequality
C     holds.
C
C     CONTRIBUTORS
C
C     R. Byers, the routines QSEC and QSEC0 (January, 1995).
C
C     REVISIONS
C
C     Release 4.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1999.
C     V. Sima, Research Institute for Informatics, Bucharest, Apr. 2002,
C     Jan. 2003.
C
C     KEYWORDS
C
C     complex stability radius, distances, eigenvalue, eigenvalue
C     perturbation, norms.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER           MAXIT
      PARAMETER         ( MAXIT = 50 )
      DOUBLE PRECISION  ZERO, ONE, TWO
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
      COMPLEX*16        CONE
      PARAMETER         ( CONE = ( 1.0D0, 0.0D0 ) )
C     .. Scalar Arguments ..
      INTEGER           INFO, LCWORK, LDA, LDWORK, N
      DOUBLE PRECISION  BETA, OMEGA, TOL
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*)
      COMPLEX*16        CWORK(*)
C     .. Local Scalars ..
      INTEGER           I, IA2, IAA, IGF, IHI, ILO, ITNUM, IWI, IWK,
     $                  IWR, JWORK, KOM, LBEST, MINWRK, N2
      DOUBLE PRECISION  EPS, LOW, OM, OM1, OM2, SFMN, SIGMA, SV, TAU,
     $                  TEMP, TOL1
      LOGICAL           SUFWRK
C     .. Local Arrays ..
      DOUBLE PRECISION  DUMMY(1), DUMMY2(1,1)
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH, DLANGE, MB03NY
      EXTERNAL          DLAMCH, DLANGE, MB03NY
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEBAL, DGEMM, DHSEQR, DLACPY, DSYMM,
     $                  DSYMV, MA02ED, MB04ZD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, INT, MAX, SQRT
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO   = 0
      MINWRK = 3*N*( N + 2 )
C
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -3
      ELSE IF( LDWORK.LT.MAX( 1, MINWRK ) ) THEN
         INFO = -8
      ELSE IF( LCWORK.LT.MAX( 1, N*( N + 3 ) ) ) THEN
         INFO = -10
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB13FD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      OMEGA = ZERO
      IF ( N.EQ.0 ) THEN
         BETA = ZERO
         DWORK(1) = ONE
         CWORK(1) = CONE
         RETURN
      END IF
C
C     Indices for splitting the work array.
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of workspace needed at that point in the code,
C     as well as the preferred amount for good performance.)
C
      N2  = N*N
      IGF = 1
      IA2 = IGF + N2 + N
      IAA = IA2 + N2
      IWK = IAA + N2
      IWR = IAA
      IWI = IWR + N
C
      SUFWRK = LDWORK-IWK.GE.N2
C
C     Computation of the tolerances. EPS is the machine precision.
C
      SFMN = DLAMCH( 'Safe minimum' )
      EPS  = DLAMCH( 'Epsilon' )
      TOL1 = SQRT( EPS * DBLE( 2*N ) ) *
     $       DLANGE( 'Frobenius', N, N, A, LDA, DWORK )
      TAU  = ONE + MAX( TOL, EPS )
C
C     Initialization, upper bound at known critical point.
C     Workspace: need N*(N+1)+5*N; prefer larger.
C
      KOM = 2
      LOW = ZERO
      CALL DLACPY( 'All', N, N, A, LDA, DWORK(IGF), N )
      BETA = MB03NY( N, OMEGA, DWORK(IGF), N, DWORK(IGF+N2),
     $               DWORK(IA2), LDWORK-IA2, CWORK, LCWORK, INFO )
      IF ( INFO.NE.0 )
     $   RETURN
      LBEST = MAX( MINWRK, INT( DWORK(IA2) ) - IA2 + 1, 4*N2 + N )
C
      ITNUM = 1
C     WHILE ( ITNUM <= MAXIT and BETA > TAU*MAX( TOL1, LOW ) ) DO
   10 IF ( ( ITNUM.LE.MAXIT ) .AND.
     $     ( BETA.GT.TAU*MAX( TOL1, LOW ) ) ) THEN
         IF ( KOM.EQ.2 ) THEN
            SIGMA = BETA/TAU
         ELSE
            SIGMA = SQRT( BETA ) * SQRT( MAX( TOL1, LOW ) )
         END IF
C
C        Set up H(sigma).
C        Workspace: N*(N+1)+2*N*N.
C
         CALL DLACPY( 'Full', N, N, A, LDA, DWORK(IAA), N )
         DWORK(IGF)   =  SIGMA
         DWORK(IGF+N) = -SIGMA
         DUMMY(1) = ZERO
         CALL DCOPY( N-1, DUMMY, 0, DWORK(IGF+1), 1 )
C
         DO 20 I = IGF, IA2 - N - 2, N + 1
            CALL DCOPY( N+1, DWORK(I), 1, DWORK(I+N+1), 1 )
   20    CONTINUE
C
C        Computation of the eigenvalues by the square reduced algorithm.
C        Workspace: N*(N+1)+2*N*N+2*N.
C
         CALL MB04ZD( 'No vectors', N, DWORK(IAA), N, DWORK(IGF), N,
     $                DUMMY2, 1, DWORK(IWK), INFO )
C
C        Form the matrix A*A + F*G.
C        Workspace: need   N*(N+1)+2*N*N+N;
C                   prefer N*(N+1)+3*N*N.
C
         JWORK = IA2
         IF ( SUFWRK )
     $      JWORK = IWK
C
         CALL DLACPY( 'Lower', N, N, DWORK(IGF), N, DWORK(JWORK), N )
         CALL MA02ED( 'Lower', N, DWORK(JWORK), N )
C
         IF ( SUFWRK ) THEN
C
C           Use BLAS 3 calculation.
C
            CALL DSYMM( 'Left', 'Upper', N, N, ONE, DWORK(IGF+N), N,
     $                  DWORK(JWORK), N, ZERO, DWORK(IA2), N )
         ELSE
C
C           Use BLAS 2 calculation.
C
            DO 30 I = 1, N
               CALL DSYMV( 'Upper', N, ONE, DWORK(IGF+N), N,
     $                     DWORK(IA2+N*(I-1)), 1, ZERO, DWORK(IWK), 1 )
               CALL DCOPY( N, DWORK(IWK), 1, DWORK(IA2+N*(I-1)), 1 )
   30       CONTINUE
C
         END IF
C
         CALL DGEMM( 'NoTranspose', 'NoTranspose', N, N, N, ONE,
     $               DWORK(IAA), N, DWORK(IAA), N, ONE, DWORK(IA2), N )
C
C        Find the eigenvalues of A*A + F*G.
C        Workspace: N*(N+1)+N*N+3*N.
C
         JWORK = IWI + N
         CALL DGEBAL( 'Scale', N, DWORK(IA2), N, ILO, IHI, DWORK(JWORK),
     $                I )
         CALL DHSEQR( 'Eigenvalues', 'NoSchurVectors', N, ILO, IHI,
     $                DWORK(IA2), N, DWORK(IWR), DWORK(IWI), DUMMY2, 1,
     $                DWORK(JWORK), N, INFO )
C
         IF ( INFO.NE.0 ) THEN
            INFO = 2
            RETURN
         END IF
C
C        Count negative real axis squared eigenvalues. If there are two,
C        then the valley is isolated, and next approximate minimizer is
C        mean of the square roots.
C
         KOM = 0
         DO 40 I = 0, N - 1
            TEMP = ABS( DWORK(IWI+I) )
            IF ( TOL1.GT.SFMN ) TEMP = TEMP / TOL1
            IF ( ( DWORK(IWR+I).LT.ZERO ) .AND. ( TEMP.LE.TOL1 ) ) THEN
               KOM = KOM + 1
               OM = SQRT( -DWORK(IWR+I) )
               IF ( KOM.EQ.1 ) OM1 = OM
               IF ( KOM.EQ.2 ) OM2 = OM
            END IF
   40    CONTINUE
C
         IF ( KOM.EQ.0 ) THEN
            LOW = SIGMA
         ELSE
C
C           In exact arithmetic KOM = 1 is impossible, but if tau is
C           close enough to one, MB04ZD may miss the initial near zero
C           eigenvalue.
C           Workspace, real:    need   3*N*(N+2);  prefer larger;
C                      complex: need     N*(N+3);  prefer larger.
C
            IF ( KOM.EQ.2 ) THEN
               OM = OM1 + ( OM2 - OM1 ) / TWO
            ELSE IF ( KOM.EQ.1 .AND. ITNUM.EQ.1 ) THEN
               OM  = OM1 / TWO
               KOM = 2
            END IF
C
            CALL DLACPY( 'All', N, N, A, LDA, DWORK(IGF), N )
            SV = MB03NY( N, OM, DWORK(IGF), N, DWORK(IGF+N2),
     $                   DWORK(IA2), LDWORK-IA2, CWORK, LCWORK, INFO )
            IF ( INFO.NE.0 )
     $         RETURN
            IF ( BETA.GT.SV ) THEN
               BETA  = SV
               OMEGA = OM
            ELSE
               INFO = 1
               RETURN
            END IF
         END IF
         ITNUM = ITNUM + 1
         GO TO 10
C        END WHILE 10
      END IF
C
      IF ( BETA .GT. TAU*MAX( TOL1, LOW ) ) THEN
C
C        Failed to meet bounds within MAXIT iterations.
C
         INFO = 1
         RETURN
      END IF
C
C     Set optimal real workspace dimension (complex workspace is already
C     set by MB03NY).
C
      DWORK(1) = LBEST
C
      RETURN
C *** Last line of AB13FD ***
      END