1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
SUBROUTINE AG08BD( EQUIL, L, N, M, P, A, LDA, E, LDE, B, LDB,
$ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ, NKROR,
$ NINFE, NKROL, INFZ, KRONR, INFE, KRONL,
$ TOL, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To extract from the system pencil
C
C ( A-lambda*E B )
C S(lambda) = ( )
C ( C D )
C
C a regular pencil Af-lambda*Ef which has the finite Smith zeros of
C S(lambda) as generalized eigenvalues. The routine also computes
C the orders of the infinite Smith zeros and determines the singular
C and infinite Kronecker structure of system pencil, i.e., the right
C and left Kronecker indices, and the multiplicities of infinite
C eigenvalues.
C
C ARGUMENTS
C
C Mode Parameters
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to balance the system
C matrix as follows:
C = 'S': Perform balancing (scaling);
C = 'N': Do not perform balancing.
C
C Input/Output Parameters
C
C L (input) INTEGER
C The number of rows of matrices A, B, and E. L >= 0.
C
C N (input) INTEGER
C The number of columns of matrices A, E, and C. N >= 0.
C
C M (input) INTEGER
C The number of columns of matrix B. M >= 0.
C
C P (input) INTEGER
C The number of rows of matrix C. P >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading L-by-N part of this array must
C contain the state dynamics matrix A of the system.
C On exit, the leading NFZ-by-NFZ part of this array
C contains the matrix Af of the reduced pencil.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,L).
C
C E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C On entry, the leading L-by-N part of this array must
C contain the descriptor matrix E of the system.
C On exit, the leading NFZ-by-NFZ part of this array
C contains the matrix Ef of the reduced pencil.
C
C LDE INTEGER
C The leading dimension of array E. LDE >= MAX(1,L).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading L-by-M part of this array must
C contain the input/state matrix B of the system.
C On exit, this matrix does not contain useful information.
C
C LDB INTEGER
C The leading dimension of array B.
C LDB >= MAX(1,L) if M > 0;
C LDB >= 1 if M = 0.
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the state/output matrix C of the system.
C On exit, this matrix does not contain useful information.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading P-by-M part of this array must contain the
C direct transmission matrix D of the system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C NFZ (output) INTEGER
C The number of finite zeros.
C
C NRANK (output) INTEGER
C The normal rank of the system pencil.
C
C NIZ (output) INTEGER
C The number of infinite zeros.
C
C DINFZ (output) INTEGER
C The maximal multiplicity of infinite Smith zeros.
C
C NKROR (output) INTEGER
C The number of right Kronecker indices.
C
C NINFE (output) INTEGER
C The number of elementary infinite blocks.
C
C NKROL (output) INTEGER
C The number of left Kronecker indices.
C
C INFZ (output) INTEGER array, dimension (N+1)
C The leading DINFZ elements of INFZ contain information
C on the infinite elementary divisors as follows:
C the system has INFZ(i) infinite elementary divisors of
C degree i in the Smith form, where i = 1,2,...,DINFZ.
C
C KRONR (output) INTEGER array, dimension (N+M+1)
C The leading NKROR elements of this array contain the
C right Kronecker (column) indices.
C
C INFE (output) INTEGER array, dimension (1+MIN(L+P,N+M))
C The leading NINFE elements of INFE contain the
C multiplicities of infinite eigenvalues.
C
C KRONL (output) INTEGER array, dimension (L+P+1)
C The leading NKROL elements of this array contain the
C left Kronecker (row) indices.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C A tolerance used in rank decisions to determine the
C effective rank, which is defined as the order of the
C largest leading (or trailing) triangular submatrix in the
C QR (or RQ) factorization with column (or row) pivoting
C whose estimated condition number is less than 1/TOL.
C If the user sets TOL <= 0, then default tolerances are
C used instead, as follows: TOLDEF = L*N*EPS in TG01FD
C (to determine the rank of E) and TOLDEF = (L+P)*(N+M)*EPS
C in the rest, where EPS is the machine precision
C (see LAPACK Library routine DLAMCH). TOL < 1.
C
C Workspace
C
C IWORK INTEGER array, dimension N+max(1,M)
C On output, IWORK(1) contains the normal rank of the
C transfer function matrix.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= max( 4*(L+N), LDW ), if EQUIL = 'S',
C LDWORK >= LDW, if EQUIL = 'N', where
C LDW = max(L+P,M+N)*(M+N) + max(1,5*max(L+P,M+N)).
C For optimum performance LDWORK should be larger.
C
C If LDWORK = -1, then a workspace query is assumed;
C the routine only calculates the optimal size of the
C DWORK array, returns this value as the first entry of
C the DWORK array, and no error message related to LDWORK
C is issued by XERBLA.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine extracts from the system matrix of a descriptor
C system (A-lambda*E,B,C,D) a regular pencil Af-lambda*Ef which
C has the finite zeros of the system as generalized eigenvalues.
C The procedure has the following main computational steps:
C
C (a) construct the (L+P)-by-(N+M) system pencil
C
C S(lambda) = ( B A )-lambda*( 0 E );
C ( D C ) ( 0 0 )
C
C (b) reduce S(lambda) to S1(lambda) with the same finite
C zeros and right Kronecker structure but with E
C upper triangular and nonsingular;
C
C (c) reduce S1(lambda) to S2(lambda) with the same finite
C zeros and right Kronecker structure but with D of
C full row rank;
C
C (d) reduce S2(lambda) to S3(lambda) with the same finite zeros
C and with D square invertible;
C
C (e) perform a unitary transformation on the columns of
C
C S3(lambda) = (A-lambda*E B) in order to reduce it to
C ( C D)
C
C (Af-lambda*Ef X), with Y and Ef square invertible;
C ( 0 Y)
C
C (f) compute the right and left Kronecker indices of the system
C matrix, which together with the multiplicities of the
C finite and infinite eigenvalues constitute the
C complete set of structural invariants under strict
C equivalence transformations of a linear system.
C
C REFERENCES
C
C [1] P. Misra, P. Van Dooren and A. Varga.
C Computation of structural invariants of generalized
C state-space systems.
C Automatica, 30, pp. 1921-1936, 1994.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable (see [1]).
C
C FURTHER COMMENTS
C
C In order to compute the finite Smith zeros of the system
C explicitly, a call to this routine may be followed by a
C call to the LAPACK Library routines DGEGV or DGGEV.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center, DLR Oberpfaffenhofen,
C May 1999.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Sep. 1999,
C Jan. 2009, Mar. 2009, Apr. 2009.
C A. Varga, DLR Oberpfaffenhofen, Nov. 1999, Feb. 2002, Mar. 2002.
C
C KEYWORDS
C
C Generalized eigenvalue problem, Kronecker indices, multivariable
C system, orthogonal transformation, structural invariant.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER EQUIL
INTEGER DINFZ, INFO, L, LDA, LDB, LDC, LDD, LDE, LDWORK,
$ M, N, NFZ, NINFE, NIZ, NKROL, NKROR, NRANK, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER INFE(*), INFZ(*), IWORK(*), KRONL(*), KRONR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), E(LDE,*)
C .. Local Scalars ..
LOGICAL LEQUIL, LQUERY
INTEGER I, I0, I1, II, IPD, ITAU, J, JWORK, KABCD,
$ LABCD2, LDABCD, LDW, MM, MU, N2, NB, NN, NSINFE,
$ NU, NUMU, PP, WRKOPT
DOUBLE PRECISION SVLMAX, TOLER
C .. Local Arrays ..
DOUBLE PRECISION DUM(1)
C .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE, ILAENV, LSAME
C .. External Subroutines ..
EXTERNAL AG08BY, DLACPY, DLASET, DORMRZ, DTZRZF, MA02BD,
$ MA02CD, TB01XD, TG01AD, TG01FD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
LDABCD = MAX( L+P, N+M )
LABCD2 = LDABCD*( N+M )
LEQUIL = LSAME( EQUIL, 'S' )
LQUERY = ( LDWORK.EQ.-1 )
C
C Test the input scalar arguments.
C
IF( .NOT.LEQUIL .AND. .NOT.LSAME( EQUIL, 'N' ) ) THEN
INFO = -1
ELSE IF( L.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( P.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, L ) ) THEN
INFO = -7
ELSE IF( LDE.LT.MAX( 1, L ) ) THEN
INFO = -9
ELSE IF( LDB.LT.1 .OR. ( M.GT.0 .AND. LDB.LT.L ) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -13
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -15
ELSE IF( TOL.GE.ONE ) THEN
INFO = -27
ELSE
I0 = MIN( L+P, M+N )
I1 = MIN( L, N )
II = MIN( M, P )
LDW = LABCD2 + MAX( 1, 5*LDABCD )
IF( LEQUIL )
$ LDW = MAX( 4*( L + N ), LDW )
IF( LQUERY ) THEN
CALL TG01FD( 'N', 'N', 'N', L, N, M, P, A, LDA, E, LDE, B,
$ LDB, C, LDC, DUM, 1, DUM, 1, NN, N2, TOL,
$ IWORK, DWORK, -1, INFO )
WRKOPT = MAX( LDW, INT( DWORK(1) ) )
SVLMAX = ZERO
CALL AG08BY( .TRUE., I1, M+N, P+L, SVLMAX, DWORK, LDABCD+I1,
$ E, LDE, NU, MU, NIZ, DINFZ, NKROL, INFZ, KRONL,
$ TOL, IWORK, DWORK, -1, INFO )
WRKOPT = MAX( WRKOPT, LABCD2 + INT( DWORK(1) ) )
CALL AG08BY( .FALSE., I1, II, M+N, SVLMAX, DWORK, LDABCD+I1,
$ E, LDE, NU, MU, NIZ, DINFZ, NKROL, INFZ, KRONL,
$ TOL, IWORK, DWORK, -1, INFO )
WRKOPT = MAX( WRKOPT, LABCD2 + INT( DWORK(1) ) )
NB = ILAENV( 1, 'ZGERQF', ' ', II, I1+II, -1, -1 )
WRKOPT = MAX( WRKOPT, LABCD2 + II + II*NB )
NB = MIN( 64, ILAENV( 1, 'DORMRQ', 'RT', I1, I1+II, II,
$ -1 ) )
WRKOPT = MAX( WRKOPT, LABCD2 + II + I1*NB )
ELSE IF( LDWORK.LT.LDW ) THEN
INFO = -30
END IF
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AG08BD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
DWORK(1) = WRKOPT
RETURN
END IF
C
NIZ = 0
NKROL = 0
NKROR = 0
C
C Quick return if possible.
C
IF( MAX( L, N, M, P ).EQ.0 ) THEN
NFZ = 0
DINFZ = 0
NINFE = 0
NRANK = 0
IWORK(1) = 0
DWORK(1) = ONE
RETURN
END IF
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.)
C
WRKOPT = 1
KABCD = 1
JWORK = KABCD + LABCD2
C
C If required, balance the system pencil.
C Workspace: need 4*(L+N).
C
IF( LEQUIL ) THEN
CALL TG01AD( 'A', L, N, M, P, ZERO, A, LDA, E, LDE, B, LDB,
$ C, LDC, DWORK, DWORK(L+1), DWORK(L+N+1), INFO )
WRKOPT = 4*(L+N)
END IF
SVLMAX = DLANGE( 'Frobenius', L, N, E, LDE, DWORK )
C
C Reduce the system matrix to QR form,
C
C ( A11-lambda*E11 A12 B1 )
C ( A21 A22 B2 ) ,
C ( C1 C2 D )
C
C with E11 invertible and upper triangular.
C Real workspace: need max( 1, N+P, min(L,N)+max(3*N-1,M,L) );
C prefer larger.
C Integer workspace: N.
C
CALL TG01FD( 'N', 'N', 'N', L, N, M, P, A, LDA, E, LDE, B, LDB,
$ C, LDC, DUM, 1, DUM, 1, NN, N2, TOL, IWORK, DWORK,
$ LDWORK, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
C Construct the system pencil
C
C MM NN
C ( B1 A12 A11-lambda*E11 ) NN
C S1(lambda) = ( B2 A22 A21 ) L-NN
C ( D C2 C1 ) P
C
C of dimension (L+P)-by-(M+N).
C Workspace: need LABCD2 = max( L+P, N+M )*( N+M ).
C
N2 = N - NN
MM = M + N2
PP = P + ( L - NN )
CALL DLACPY( 'Full', L, M, B, LDB, DWORK(KABCD), LDABCD )
CALL DLACPY( 'Full', P, M, D, LDD, DWORK(KABCD+L), LDABCD )
CALL DLACPY( 'Full', L, N2, A(1,NN+1), LDA,
$ DWORK(KABCD+LDABCD*M), LDABCD )
CALL DLACPY( 'Full', P, N2, C(1,NN+1), LDC,
$ DWORK(KABCD+LDABCD*M+L), LDABCD )
CALL DLACPY( 'Full', L, NN, A, LDA,
$ DWORK(KABCD+LDABCD*MM), LDABCD )
CALL DLACPY( 'Full', P, NN, C, LDC,
$ DWORK(KABCD+LDABCD*MM+L), LDABCD )
C
C If required, set tolerance.
C
TOLER = TOL
IF( TOLER.LE.ZERO ) THEN
TOLER = DBLE( ( L + P )*( M + N ) ) * DLAMCH( 'Precision' )
END IF
SVLMAX = MAX( SVLMAX,
$ DLANGE( 'Frobenius', NN+PP, NN+MM, DWORK(KABCD),
$ LDABCD, DWORK(JWORK) ) )
C
C Extract the reduced pencil S2(lambda)
C
C ( Bc Ac-lambda*Ec )
C ( Dc Cc )
C
C having the same finite Smith zeros as the system pencil
C S(lambda) but with Dc, a MU-by-MM full row rank
C left upper trapezoidal matrix, and Ec, an NU-by-NU
C upper triangular nonsingular matrix.
C
C Real workspace: need max( min(P+L,M+N)+max(min(L,N),3*(M+N)-1),
C 5*(P+L), 1 ) + LABCD2;
C prefer larger.
C Integer workspace: MM, MM <= M+N; PP <= P+L.
C
CALL AG08BY( .TRUE., NN, MM, PP, SVLMAX, DWORK(KABCD), LDABCD,
$ E, LDE, NU, MU, NIZ, DINFZ, NKROL, INFZ, KRONL,
$ TOLER, IWORK, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Set the number of simple (nondynamic) infinite eigenvalues
C and the normal rank of the system pencil.
C
NSINFE = MU
NRANK = NN + MU
C
C Pertranspose the system.
C
CALL TB01XD( 'D', NU, MM, MM, MAX( 0, NU-1 ), MAX( 0, NU-1 ),
$ DWORK(KABCD+LDABCD*MM), LDABCD,
$ DWORK(KABCD), LDABCD,
$ DWORK(KABCD+LDABCD*MM+NU), LDABCD,
$ DWORK(KABCD+NU), LDABCD, INFO )
CALL MA02BD( 'Right', NU+MM, MM, DWORK(KABCD), LDABCD )
CALL MA02BD( 'Left', MM, NU+MM, DWORK(KABCD+NU), LDABCD )
CALL MA02CD( NU, 0, MAX( 0, NU-1 ), E, LDE )
C
IF( MU.NE.MM ) THEN
NN = NU
PP = MM
MM = MU
KABCD = KABCD + ( PP - MM )*LDABCD
C
C Extract the reduced pencil S3(lambda),
C
C ( Br Ar-lambda*Er ) ,
C ( Dr Cr )
C
C having the same finite Smith zeros as the pencil S(lambda),
C but with Dr, an MU-by-MU invertible upper triangular matrix,
C and Er, an NU-by-NU upper triangular nonsingular matrix.
C
C Workspace: need max( 1, 5*(M+N) ) + LABCD2.
C prefer larger.
C No integer workspace necessary.
C
CALL AG08BY( .FALSE., NN, MM, PP, SVLMAX, DWORK(KABCD), LDABCD,
$ E, LDE, NU, MU, I0, I1, NKROR, IWORK, KRONR,
$ TOLER, IWORK, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
END IF
C
IF( NU.NE.0 ) THEN
C
C Perform a unitary transformation on the columns of
C ( Br Ar-lambda*Er )
C ( Dr Cr )
C in order to reduce it to
C ( * Af-lambda*Ef )
C ( Y 0 )
C with Y and Ef square invertible.
C
C Compute Af by reducing ( Br Ar ) to ( * Af ) .
C ( Dr Cr ) ( Y 0 )
C
NUMU = NU + MU
IPD = KABCD + NU
ITAU = JWORK
JWORK = ITAU + MU
C
C Workspace: need LABCD2 + 2*min(M,P);
C prefer LABCD2 + min(M,P) + min(M,P)*NB.
C
CALL DTZRZF( MU, NUMU, DWORK(IPD), LDABCD, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Workspace: need LABCD2 + min(M,P) + min(L,N);
C prefer LABCD2 + min(M,P) + min(L,N)*NB.
C
CALL DORMRZ( 'Right', 'Transpose', NU, NUMU, MU, NU,
$ DWORK(IPD), LDABCD, DWORK(ITAU), DWORK(KABCD),
$ LDABCD, DWORK(JWORK), LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Save Af.
C
CALL DLACPY( 'Full', NU, NU, DWORK(KABCD+LDABCD*MU), LDABCD, A,
$ LDA )
C
C Compute Ef by applying the saved transformations from previous
C reduction to ( 0 Er ) .
C
CALL DLASET( 'Full', NU, MU, ZERO, ZERO, DWORK(KABCD), LDABCD )
CALL DLACPY( 'Full', NU, NU, E, LDE, DWORK(KABCD+LDABCD*MU),
$ LDABCD )
C
CALL DORMRZ( 'Right', 'Transpose', NU, NUMU, MU, NU,
$ DWORK(IPD), LDABCD, DWORK(ITAU), DWORK(KABCD),
$ LDABCD, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
C Save Ef.
C
CALL DLACPY( 'Full', NU, NU, DWORK(KABCD+LDABCD*MU), LDABCD, E,
$ LDE )
END IF
C
NFZ = NU
C
C Set right Kronecker indices (column indices).
C
DO 10 I = 1, NKROR
IWORK(I) = KRONR(I)
10 CONTINUE
C
J = 0
DO 30 I = 1, NKROR
DO 20 II = J + 1, J + IWORK(I)
KRONR(II) = I - 1
20 CONTINUE
J = J + IWORK(I)
30 CONTINUE
C
NKROR = J
C
C Set left Kronecker indices (row indices).
C
DO 40 I = 1, NKROL
IWORK(I) = KRONL(I)
40 CONTINUE
C
J = 0
DO 60 I = 1, NKROL
DO 50 II = J + 1, J + IWORK(I)
KRONL(II) = I - 1
50 CONTINUE
J = J + IWORK(I)
60 CONTINUE
C
NKROL = J
C
C Determine the number of simple infinite blocks
C as the difference between the number of infinite blocks
C of order greater than one and the order of Dr.
C
NINFE = 0
DO 70 I = 1, DINFZ
NINFE = NINFE + INFZ(I)
70 CONTINUE
NINFE = NSINFE - NINFE
DO 80 I = 1, NINFE
INFE(I) = 1
80 CONTINUE
C
C Set the structure of infinite eigenvalues.
C
DO 100 I = 1, DINFZ
DO 90 II = NINFE + 1, NINFE + INFZ(I)
INFE(II) = I + 1
90 CONTINUE
NINFE = NINFE + INFZ(I)
100 CONTINUE
C
IWORK(1) = NSINFE
DWORK(1) = WRKOPT
RETURN
C *** Last line of AG08BD ***
END
|