File: AG08BD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (628 lines) | stat: -rw-r--r-- 22,128 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
      SUBROUTINE AG08BD( EQUIL, L, N, M, P, A, LDA, E, LDE, B, LDB,
     $                   C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ, NKROR,
     $                   NINFE, NKROL, INFZ, KRONR, INFE, KRONL,
     $                   TOL, IWORK, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To extract from the system pencil
C
C                       ( A-lambda*E B )
C           S(lambda) = (              )
C                       (      C     D )
C
C     a regular pencil Af-lambda*Ef which has the finite Smith zeros of
C     S(lambda) as generalized eigenvalues. The routine also computes
C     the orders of the infinite Smith zeros and determines the singular
C     and infinite Kronecker structure of system pencil, i.e., the right
C     and left Kronecker indices, and the multiplicities of infinite
C     eigenvalues.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     EQUIL   CHARACTER*1
C             Specifies whether the user wishes to balance the system
C             matrix as follows:
C             = 'S':  Perform balancing (scaling);
C             = 'N':  Do not perform balancing.
C
C     Input/Output Parameters
C
C     L       (input) INTEGER
C             The number of rows of matrices A, B, and E.  L >= 0.
C
C     N       (input) INTEGER
C             The number of columns of matrices A, E, and C.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of matrix C.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading L-by-N part of this array must
C             contain the state dynamics matrix A of the system.
C             On exit, the leading NFZ-by-NFZ part of this array
C             contains the matrix Af of the reduced pencil.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,L).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading L-by-N part of this array must
C             contain the descriptor matrix E of the system.
C             On exit, the leading NFZ-by-NFZ part of this array
C             contains the matrix Ef of the reduced pencil.
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= MAX(1,L).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading L-by-M part of this array must
C             contain the input/state matrix B of the system.
C             On exit, this matrix does not contain useful information.
C
C     LDB     INTEGER
C             The leading dimension of array B.
C             LDB >= MAX(1,L) if M > 0;
C             LDB >= 1        if M = 0.
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C of the system.
C             On exit, this matrix does not contain useful information.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading P-by-M part of this array must contain the
C             direct transmission matrix D of the system.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     NFZ     (output) INTEGER
C             The number of finite zeros.
C
C     NRANK   (output) INTEGER
C             The normal rank of the system pencil.
C
C     NIZ     (output) INTEGER
C             The number of infinite zeros.
C
C     DINFZ   (output) INTEGER
C             The maximal multiplicity of infinite Smith zeros.
C
C     NKROR   (output) INTEGER
C             The number of right Kronecker indices.
C
C     NINFE   (output) INTEGER
C             The number of elementary infinite blocks.
C
C     NKROL   (output) INTEGER
C             The number of left Kronecker indices.
C
C     INFZ    (output) INTEGER array, dimension (N+1)
C             The leading DINFZ elements of INFZ contain information
C             on the infinite elementary divisors as follows:
C             the system has INFZ(i) infinite elementary divisors of
C             degree i in the Smith form, where i = 1,2,...,DINFZ.
C
C     KRONR   (output) INTEGER array, dimension (N+M+1)
C             The leading NKROR elements of this array contain the
C             right Kronecker (column) indices.
C
C     INFE    (output) INTEGER array, dimension (1+MIN(L+P,N+M))
C             The leading NINFE elements of INFE contain the
C             multiplicities of infinite eigenvalues.
C
C     KRONL   (output) INTEGER array, dimension (L+P+1)
C             The leading NKROL elements of this array contain the
C             left Kronecker (row) indices.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR (or RQ) factorization with column (or row) pivoting
C             whose estimated condition number is less than 1/TOL.
C             If the user sets TOL <= 0, then default tolerances are
C             used instead, as follows: TOLDEF = L*N*EPS in TG01FD
C             (to determine the rank of E) and TOLDEF = (L+P)*(N+M)*EPS
C             in the rest, where EPS is the machine precision
C             (see LAPACK Library routine DLAMCH).  TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension N+max(1,M)
C             On output, IWORK(1) contains the normal rank of the
C             transfer function matrix.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= max( 4*(L+N), LDW ), if EQUIL = 'S',
C             LDWORK >= LDW,                 if EQUIL = 'N', where
C             LDW = max(L+P,M+N)*(M+N) + max(1,5*max(L+P,M+N)).
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The routine extracts from the system matrix of a descriptor
C     system (A-lambda*E,B,C,D) a regular pencil Af-lambda*Ef which
C     has the finite zeros of the system as generalized eigenvalues.
C     The procedure has the following main computational steps:
C
C        (a) construct the (L+P)-by-(N+M) system pencil
C
C             S(lambda) = ( B  A )-lambda*( 0  E );
C                         ( D  C )        ( 0  0 )
C
C        (b) reduce S(lambda) to S1(lambda) with the same finite
C            zeros and right Kronecker structure but with E
C            upper triangular and nonsingular;
C
C        (c) reduce S1(lambda) to S2(lambda) with the same finite
C            zeros and right Kronecker structure but with D of
C            full row rank;
C
C        (d) reduce S2(lambda) to S3(lambda) with the same finite zeros
C            and with D square invertible;
C
C        (e) perform a unitary transformation on the columns of
C
C            S3(lambda) = (A-lambda*E   B) in order to reduce it to
C                         (     C       D)
C
C            (Af-lambda*Ef   X), with Y and Ef square invertible;
C            (     0         Y)
C
C        (f) compute the right and left Kronecker indices of the system
C            matrix, which together with the multiplicities of the
C            finite and infinite eigenvalues constitute the
C            complete set of structural invariants under strict
C            equivalence transformations of a linear system.
C
C     REFERENCES
C
C     [1] P. Misra, P. Van Dooren and A. Varga.
C         Computation of structural invariants of generalized
C         state-space systems.
C         Automatica, 30, pp. 1921-1936, 1994.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable (see [1]).
C
C     FURTHER COMMENTS
C
C     In order to compute the finite Smith zeros of the system
C     explicitly, a call to this routine may be followed by a
C     call to the LAPACK Library routines DGEGV or DGGEV.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen,
C     May 1999.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Sep. 1999,
C     Jan. 2009, Mar. 2009, Apr. 2009.
C     A. Varga, DLR Oberpfaffenhofen, Nov. 1999, Feb. 2002, Mar. 2002.
C
C     KEYWORDS
C
C     Generalized eigenvalue problem, Kronecker indices, multivariable
C     system, orthogonal transformation, structural invariant.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         EQUIL
      INTEGER           DINFZ, INFO, L, LDA, LDB, LDC, LDD, LDE, LDWORK,
     $                  M, N, NFZ, NINFE, NIZ, NKROL, NKROR, NRANK, P
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           INFE(*), INFZ(*), IWORK(*), KRONL(*), KRONR(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), E(LDE,*)
C     .. Local Scalars ..
      LOGICAL           LEQUIL, LQUERY
      INTEGER           I, I0, I1, II, IPD, ITAU, J, JWORK, KABCD,
     $                  LABCD2, LDABCD, LDW, MM, MU, N2, NB, NN, NSINFE,
     $                  NU, NUMU, PP, WRKOPT
      DOUBLE PRECISION  SVLMAX, TOLER
C     .. Local Arrays ..
      DOUBLE PRECISION  DUM(1)
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           ILAENV
      DOUBLE PRECISION  DLAMCH, DLANGE
      EXTERNAL          DLAMCH, DLANGE, ILAENV, LSAME
C     .. External Subroutines ..
      EXTERNAL          AG08BY, DLACPY, DLASET, DORMRZ, DTZRZF, MA02BD,
     $                  MA02CD, TB01XD, TG01AD, TG01FD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
      LDABCD = MAX( L+P, N+M )
      LABCD2 = LDABCD*( N+M )
      LEQUIL = LSAME( EQUIL, 'S' )
      LQUERY = ( LDWORK.EQ.-1 )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LEQUIL .AND. .NOT.LSAME( EQUIL, 'N' ) ) THEN
         INFO = -1
      ELSE IF( L.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, L ) ) THEN
         INFO = -7
      ELSE IF( LDE.LT.MAX( 1, L ) ) THEN
         INFO = -9
      ELSE IF( LDB.LT.1 .OR. ( M.GT.0 .AND. LDB.LT.L ) ) THEN
         INFO = -11
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -13
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -15
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -27
      ELSE
         I0  = MIN( L+P, M+N )
         I1  = MIN( L, N )
         II  = MIN( M, P )
         LDW = LABCD2 + MAX( 1, 5*LDABCD )
         IF( LEQUIL )
     $      LDW = MAX( 4*( L + N ), LDW )
         IF( LQUERY ) THEN
            CALL TG01FD( 'N', 'N', 'N', L, N, M, P, A, LDA, E, LDE, B,
     $                   LDB, C, LDC, DUM, 1, DUM, 1, NN, N2, TOL,
     $                   IWORK, DWORK, -1, INFO )
            WRKOPT = MAX( LDW, INT( DWORK(1) ) )
            SVLMAX = ZERO
            CALL AG08BY( .TRUE., I1, M+N, P+L, SVLMAX, DWORK, LDABCD+I1,
     $                   E, LDE, NU, MU, NIZ, DINFZ, NKROL, INFZ, KRONL,
     $                   TOL, IWORK, DWORK, -1, INFO )
            WRKOPT = MAX( WRKOPT, LABCD2 + INT( DWORK(1) ) )
            CALL AG08BY( .FALSE., I1, II, M+N, SVLMAX, DWORK, LDABCD+I1,
     $                   E, LDE, NU, MU, NIZ, DINFZ, NKROL, INFZ, KRONL,
     $                   TOL, IWORK, DWORK, -1, INFO )
            WRKOPT = MAX( WRKOPT, LABCD2 + INT( DWORK(1) ) )
            NB = ILAENV( 1, 'ZGERQF', ' ', II, I1+II, -1, -1 )
            WRKOPT = MAX( WRKOPT, LABCD2 + II + II*NB )
            NB = MIN( 64, ILAENV( 1, 'DORMRQ', 'RT', I1, I1+II, II,
     $                            -1 ) )
            WRKOPT = MAX( WRKOPT, LABCD2 + II + I1*NB )
         ELSE IF( LDWORK.LT.LDW ) THEN
            INFO = -30
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AG08BD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
      NIZ = 0
      NKROL = 0
      NKROR = 0
C
C     Quick return if possible.
C
      IF( MAX( L, N, M, P ).EQ.0 ) THEN
         NFZ = 0
         DINFZ = 0
         NINFE = 0
         NRANK = 0
         IWORK(1) = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.)
C
      WRKOPT = 1
      KABCD  = 1
      JWORK  = KABCD + LABCD2
C
C     If required, balance the system pencil.
C     Workspace: need   4*(L+N).
C
      IF( LEQUIL ) THEN
         CALL TG01AD( 'A', L, N, M, P, ZERO, A, LDA, E, LDE, B, LDB,
     $                C, LDC, DWORK, DWORK(L+1), DWORK(L+N+1), INFO )
         WRKOPT = 4*(L+N)
      END IF
      SVLMAX = DLANGE( 'Frobenius', L, N, E, LDE, DWORK )
C
C     Reduce the system matrix to QR form,
C
C          ( A11-lambda*E11 A12 B1 )
C          (     A21        A22 B2 ) ,
C          (     C1         C2  D  )
C
C     with E11 invertible and upper triangular.
C     Real workspace: need   max( 1, N+P, min(L,N)+max(3*N-1,M,L) );
C                     prefer larger.
C     Integer workspace: N.
C
      CALL TG01FD( 'N', 'N', 'N', L, N, M, P, A, LDA, E, LDE, B, LDB,
     $             C, LDC, DUM, 1, DUM, 1, NN, N2, TOL, IWORK, DWORK,
     $             LDWORK, INFO )
      WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
C     Construct the system pencil
C
C                          MM         NN
C                      ( B1 A12 A11-lambda*E11 ) NN
C        S1(lambda) =  ( B2 A22      A21       ) L-NN
C                      ( D  C2       C1        ) P
C
C     of dimension (L+P)-by-(M+N).
C     Workspace: need  LABCD2 = max( L+P, N+M )*( N+M ).
C
      N2 = N - NN
      MM = M + N2
      PP = P + ( L - NN )
      CALL DLACPY( 'Full', L, M, B, LDB, DWORK(KABCD), LDABCD )
      CALL DLACPY( 'Full', P, M, D, LDD, DWORK(KABCD+L), LDABCD )
      CALL DLACPY( 'Full', L, N2, A(1,NN+1), LDA,
     $              DWORK(KABCD+LDABCD*M), LDABCD )
      CALL DLACPY( 'Full', P, N2, C(1,NN+1), LDC,
     $              DWORK(KABCD+LDABCD*M+L), LDABCD )
      CALL DLACPY( 'Full', L, NN, A, LDA,
     $              DWORK(KABCD+LDABCD*MM), LDABCD )
      CALL DLACPY( 'Full', P, NN, C, LDC,
     $              DWORK(KABCD+LDABCD*MM+L), LDABCD )
C
C     If required, set tolerance.
C
      TOLER = TOL
      IF( TOLER.LE.ZERO ) THEN
         TOLER = DBLE( ( L + P )*( M + N ) ) * DLAMCH( 'Precision' )
      END IF
      SVLMAX = MAX( SVLMAX,
     $              DLANGE( 'Frobenius', NN+PP, NN+MM, DWORK(KABCD),
     $                      LDABCD, DWORK(JWORK) ) )
C
C     Extract the reduced pencil S2(lambda)
C
C             ( Bc  Ac-lambda*Ec )
C             ( Dc      Cc       )
C
C     having the same finite Smith zeros as the system pencil
C     S(lambda) but with Dc, a MU-by-MM full row rank
C     left upper trapezoidal matrix, and Ec, an NU-by-NU
C     upper triangular nonsingular matrix.
C
C     Real workspace: need   max( min(P+L,M+N)+max(min(L,N),3*(M+N)-1),
C                                  5*(P+L), 1 ) + LABCD2;
C                     prefer larger.
C     Integer workspace: MM, MM <= M+N; PP <= P+L.
C
      CALL AG08BY( .TRUE., NN, MM, PP, SVLMAX, DWORK(KABCD), LDABCD,
     $             E, LDE, NU, MU, NIZ, DINFZ, NKROL, INFZ, KRONL,
     $             TOLER, IWORK, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C     Set the number of simple (nondynamic) infinite eigenvalues
C     and the normal rank of the system pencil.
C
      NSINFE = MU
      NRANK  = NN + MU
C
C     Pertranspose the system.
C
      CALL TB01XD( 'D', NU, MM, MM, MAX( 0, NU-1 ), MAX( 0, NU-1 ),
     $              DWORK(KABCD+LDABCD*MM), LDABCD,
     $              DWORK(KABCD), LDABCD,
     $              DWORK(KABCD+LDABCD*MM+NU), LDABCD,
     $              DWORK(KABCD+NU), LDABCD, INFO )
      CALL MA02BD( 'Right', NU+MM, MM, DWORK(KABCD), LDABCD )
      CALL MA02BD( 'Left',  MM, NU+MM, DWORK(KABCD+NU), LDABCD )
      CALL MA02CD( NU, 0, MAX( 0, NU-1 ), E, LDE )
C
      IF( MU.NE.MM ) THEN
         NN = NU
         PP = MM
         MM = MU
         KABCD = KABCD + ( PP - MM )*LDABCD
C
C        Extract the reduced pencil S3(lambda),
C
C             ( Br  Ar-lambda*Er ) ,
C             ( Dr      Cr       )
C
C        having the same finite Smith zeros as the pencil S(lambda),
C        but with Dr, an MU-by-MU invertible upper triangular matrix,
C        and Er, an NU-by-NU upper triangular nonsingular matrix.
C
C        Workspace: need   max( 1, 5*(M+N) ) + LABCD2.
C                   prefer larger.
C        No integer workspace necessary.
C
         CALL AG08BY( .FALSE., NN, MM, PP, SVLMAX, DWORK(KABCD), LDABCD,
     $                E, LDE, NU, MU, I0, I1, NKROR, IWORK, KRONR,
     $                TOLER, IWORK, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
      END IF
C
      IF( NU.NE.0 ) THEN
C
C        Perform a unitary transformation on the columns of
C                     ( Br Ar-lambda*Er )
C                     ( Dr     Cr       )
C        in order to reduce it to
C                     ( *  Af-lambda*Ef )
C                     ( Y       0       )
C        with Y and Ef square invertible.
C
C        Compute Af by reducing  ( Br Ar ) to  ( *  Af ) .
C                                ( Dr Cr )     ( Y   0 )
C
         NUMU  = NU + MU
         IPD   = KABCD + NU
         ITAU  = JWORK
         JWORK = ITAU + MU
C
C        Workspace: need   LABCD2 + 2*min(M,P);
C                   prefer LABCD2 + min(M,P) + min(M,P)*NB.
C
         CALL DTZRZF( MU, NUMU, DWORK(IPD), LDABCD, DWORK(ITAU),
     $                DWORK(JWORK), LDWORK-JWORK+1, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C        Workspace: need   LABCD2 + min(M,P) + min(L,N);
C                   prefer LABCD2 + min(M,P) + min(L,N)*NB.
C
         CALL DORMRZ( 'Right', 'Transpose', NU, NUMU, MU, NU,
     $                DWORK(IPD), LDABCD, DWORK(ITAU), DWORK(KABCD),
     $                LDABCD, DWORK(JWORK), LDWORK-JWORK+1, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C        Save Af.
C
         CALL DLACPY( 'Full', NU, NU, DWORK(KABCD+LDABCD*MU), LDABCD, A,
     $                LDA )
C
C        Compute Ef by applying the saved transformations from previous
C        reduction to ( 0  Er ) .
C
         CALL DLASET( 'Full', NU, MU, ZERO, ZERO, DWORK(KABCD), LDABCD )
         CALL DLACPY( 'Full', NU, NU, E, LDE, DWORK(KABCD+LDABCD*MU),
     $                LDABCD )
C
         CALL DORMRZ( 'Right', 'Transpose', NU, NUMU, MU, NU,
     $                DWORK(IPD), LDABCD, DWORK(ITAU), DWORK(KABCD),
     $                LDABCD, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
C        Save Ef.
C
         CALL DLACPY( 'Full', NU, NU, DWORK(KABCD+LDABCD*MU), LDABCD, E,
     $                LDE )
      END IF
C
      NFZ = NU
C
C     Set right Kronecker indices (column indices).
C
      DO 10 I = 1, NKROR
         IWORK(I) = KRONR(I)
   10 CONTINUE
C
      J = 0
      DO 30 I = 1, NKROR
         DO 20 II = J + 1, J + IWORK(I)
            KRONR(II) = I - 1
   20    CONTINUE
         J = J + IWORK(I)
   30 CONTINUE
C
      NKROR = J
C
C     Set left Kronecker indices (row indices).
C
      DO 40 I = 1, NKROL
         IWORK(I) = KRONL(I)
   40 CONTINUE
C
      J = 0
      DO 60 I = 1, NKROL
         DO 50 II = J + 1, J + IWORK(I)
            KRONL(II) = I - 1
   50    CONTINUE
         J = J + IWORK(I)
   60 CONTINUE
C
      NKROL = J
C
C     Determine the number of simple infinite blocks
C     as the difference between the number of infinite blocks
C     of order greater than one and the order of Dr.
C
      NINFE = 0
      DO 70 I = 1, DINFZ
         NINFE = NINFE + INFZ(I)
   70 CONTINUE
      NINFE = NSINFE - NINFE
      DO 80 I = 1, NINFE
         INFE(I) = 1
   80 CONTINUE
C
C     Set the structure of infinite eigenvalues.
C
      DO 100 I = 1, DINFZ
         DO 90 II = NINFE + 1, NINFE + INFZ(I)
            INFE(II) = I + 1
   90    CONTINUE
         NINFE = NINFE + INFZ(I)
  100 CONTINUE
C
      IWORK(1) = NSINFE
      DWORK(1) = WRKOPT
      RETURN
C *** Last line of AG08BD ***
      END