1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
|
SUBROUTINE AG8BYZ( FIRST, N, M, P, SVLMAX, ABCD, LDABCD, E, LDE,
$ NR, PR, NINFZ, DINFZ, NKRONL, INFZ, KRONL,
$ TOL, IWORK, DWORK, ZWORK, LZWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To extract from the (N+P)-by-(M+N) descriptor system pencil
C
C S(lambda) = ( B A - lambda*E )
C ( D C )
C
C with E nonsingular and upper triangular a
C (NR+PR)-by-(M+NR) "reduced" descriptor system pencil
C
C ( Br Ar-lambda*Er )
C Sr(lambda) = ( )
C ( Dr Cr )
C
C having the same finite Smith zeros as the pencil
C S(lambda) but with Dr, a PR-by-M full row rank
C left upper trapezoidal matrix, and Er, an NR-by-NR
C upper triangular nonsingular matrix.
C
C ARGUMENTS
C
C Mode Parameters
C
C FIRST LOGICAL
C Specifies if AG8BYZ is called first time or it is called
C for an already reduced system, with D full column rank
C with the last M rows in upper triangular form:
C FIRST = .TRUE., first time called;
C FIRST = .FALSE., not first time called.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of rows of matrix B, the number of columns of
C matrix C and the order of square matrices A and E.
C N >= 0.
C
C M (input) INTEGER
C The number of columns of matrices B and D. M >= 0.
C M <= P if FIRST = .FALSE. .
C
C P (input) INTEGER
C The number of rows of matrices C and D. P >= 0.
C
C SVLMAX (input) DOUBLE PRECISION
C During each reduction step, the rank-revealing QR
C factorization of a matrix stops when the estimated minimum
C singular value is smaller than TOL * MAX(SVLMAX,EMSV),
C where EMSV is the estimated maximum singular value.
C SVLMAX >= 0.
C
C ABCD (input/output) COMPLEX*16 array, dimension (LDABCD,M+N)
C On entry, the leading (N+P)-by-(M+N) part of this array
C must contain the compound matrix
C ( B A ) ,
C ( D C )
C where A is an N-by-N matrix, B is an N-by-M matrix,
C C is a P-by-N matrix and D is a P-by-M matrix.
C If FIRST = .FALSE., then D must be a full column
C rank matrix with the last M rows in upper triangular form.
C On exit, the leading (NR+PR)-by-(M+NR) part of ABCD
C contains the reduced compound matrix
C ( Br Ar ) ,
C ( Dr Cr )
C where Ar is an NR-by-NR matrix, Br is an NR-by-M matrix,
C Cr is a PR-by-NR matrix, Dr is a PR-by-M full row rank
C left upper trapezoidal matrix with the first PR columns
C in upper triangular form.
C
C LDABCD INTEGER
C The leading dimension of array ABCD.
C LDABCD >= MAX(1,N+P).
C
C E (input/output) COMPLEX*16 array, dimension (LDE,N)
C On entry, the leading N-by-N part of this array must
C contain the upper triangular nonsingular matrix E.
C On exit, the leading NR-by-NR part contains the reduced
C upper triangular nonsingular matrix Er.
C
C LDE INTEGER
C The leading dimension of array E. LDE >= MAX(1,N).
C
C NR (output) INTEGER
C The order of the reduced matrices Ar and Er; also the
C number of rows of the reduced matrix Br and the number
C of columns of the reduced matrix Cr.
C If Dr is invertible, NR is also the number of finite
C Smith zeros.
C
C PR (output) INTEGER
C The rank of the resulting matrix Dr; also the number of
C rows of reduced matrices Cr and Dr.
C
C NINFZ (output) INTEGER
C Number of infinite zeros. NINFZ = 0 if FIRST = .FALSE. .
C
C DINFZ (output) INTEGER
C The maximal multiplicity of infinite zeros.
C DINFZ = 0 if FIRST = .FALSE. .
C
C NKRONL (output) INTEGER
C The maximal dimension of left elementary Kronecker blocks.
C
C INFZ (output) INTEGER array, dimension (N)
C INFZ(i) contains the number of infinite zeros of
C degree i, where i = 1,2,...,DINFZ.
C INFZ is not referenced if FIRST = .FALSE. .
C
C KRONL (output) INTEGER array, dimension (N+1)
C KRONL(i) contains the number of left elementary Kronecker
C blocks of dimension i-by-(i-1), where i = 1,2,...,NKRONL.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C A tolerance used in rank decisions to determine the
C effective rank, which is defined as the order of the
C largest leading (or trailing) triangular submatrix in the
C QR (or RQ) factorization with column (or row) pivoting
C whose estimated condition number is less than 1/TOL.
C If the user sets TOL <= 0, then an implicitly computed,
C default tolerance TOLDEF = (N+P)*(N+M)*EPS, is used
C instead, where EPS is the machine precision
C (see LAPACK Library routine DLAMCH).
C NOTE that when SVLMAX > 0, the estimated ranks could be
C less than those defined above (see SVLMAX). TOL <= 1.
C
C Workspace
C
C IWORK INTEGER array, dimension (M)
C If FIRST = .FALSE., IWORK is not referenced.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C LDWORK >= 2*MAX(M,P), if FIRST = .TRUE.;
C LDWORK >= 2*P, if FIRST = .FALSE. .
C
C ZWORK COMPLEX*16 array, dimension (LZWORK)
C On exit, if INFO = 0, ZWORK(1) returns the optimal value
C of LZWORK.
C
C LZWORK INTEGER
C The length of the array ZWORK.
C LZWORK >= 1, if P = 0; otherwise
C LZWORK >= MAX( 1, N+M-1, MIN(P,M) + MAX(3*M-1,N), 3*P ),
C if FIRST = .TRUE.;
C LZWORK >= MAX( 1, N+M-1, 3*P ), if FIRST = .FALSE. .
C The second term is not needed if M = 0.
C For optimum performance LZWORK should be larger.
C
C If LZWORK = -1, then a workspace query is assumed;
C the routine only calculates the optimal size of the
C ZWORK array, returns this value as the first entry of
C the ZWORK array, and no error message related to LZWORK
C is issued by XERBLA.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The subroutine is based on the reduction algorithm of [1].
C
C REFERENCES
C
C [1] P. Misra, P. Van Dooren and A. Varga.
C Computation of structural invariants of generalized
C state-space systems.
C Automatica, 30, pp. 1921-1936, 1994.
C
C NUMERICAL ASPECTS
C
C The algorithm is numerically backward stable and requires
C 0( (P+N)*(M+N)*N ) floating point operations.
C
C FURTHER COMMENTS
C
C The number of infinite zeros is computed as
C
C DINFZ
C NINFZ = Sum (INFZ(i)*i) .
C i=1
C Note that each infinite zero of multiplicity k corresponds to
C an infinite eigenvalue of multiplicity k+1.
C The multiplicities of the infinite eigenvalues can be determined
C from PR, DINFZ and INFZ(i), i = 1, ..., DINFZ, as follows:
C
C DINFZ
C - there are PR - Sum (INFZ(i)) simple infinite eigenvalues;
C i=1
C
C - there are INFZ(i) infinite eigenvalues with multiplicity i+1,
C for i = 1, ..., DINFZ.
C
C The left Kronecker indices are:
C
C [ 0 0 ... 0 | 1 1 ... 1 | .... | NKRONL ... NKRONL ]
C |<- KRONL(1) ->|<- KRONL(2) ->| |<- KRONL(NKRONL) ->|
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C May 1999.
C Complex version: V. Sima, Research Institute for Informatics,
C Bucharest, Nov. 2008.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2009.
C
C KEYWORDS
C
C Generalized eigenvalue problem, Kronecker indices, multivariable
C system, unitary transformation, structural invariant.
C
C ******************************************************************
C
C .. Parameters ..
INTEGER IMAX, IMIN
PARAMETER ( IMAX = 1, IMIN = 2 )
DOUBLE PRECISION ONE, P05, ZERO
PARAMETER ( ONE = 1.0D0, P05 = 0.05D0, ZERO = 0.0D0 )
COMPLEX*16 CONE, CZERO
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
$ CZERO = ( 0.0D+0, 0.0D+0 ) )
C .. Scalar Arguments ..
INTEGER DINFZ, INFO, LDABCD, LDE, LZWORK, M, N, NINFZ,
$ NKRONL, NR, P, PR
DOUBLE PRECISION SVLMAX, TOL
LOGICAL FIRST
C .. Array Arguments ..
INTEGER INFZ( * ), IWORK(*), KRONL( * )
DOUBLE PRECISION DWORK( * )
COMPLEX*16 ABCD( LDABCD, * ), E( LDE, * ), ZWORK( * )
C .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, ICOL, ILAST, IRC, IROW, ISMAX, ISMIN, ITAU,
$ J, JLAST, JWORK1, JWORK2, K, MN, MN1, MNR,
$ MNTAU, MP1, MPM, MUI, MUIM1, N1, NB, NBLCKS,
$ PN, RANK, RO, RO1, SIGMA, TAUI, WRKOPT
DOUBLE PRECISION C, RCOND, SMAX, SMAXPR, SMIN, SMINPR, T, TT
COMPLEX*16 C1, C2, S, S1, S2, TC
C .. Local Arrays ..
DOUBLE PRECISION SVAL(3)
COMPLEX*16 DUM(1)
C .. External Functions ..
INTEGER IDAMAX, ILAENV
DOUBLE PRECISION DLAMCH, DZNRM2
EXTERNAL DLAMCH, DZNRM2, IDAMAX, ILAENV
C .. External Subroutines ..
EXTERNAL MB3OYZ, XERBLA, ZCOPY, ZLAIC1, ZLAPMT, ZLARFG,
$ ZLARTG, ZLASET, ZLATZM, ZROT, ZSWAP, ZUNMQR
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
C Test the input parameters.
C
LQUERY = ( LZWORK.EQ.-1 )
INFO = 0
PN = P + N
MN = M + N
MPM = MIN( P, M )
IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 .OR. ( .NOT.FIRST .AND. M.GT.P ) ) THEN
INFO = -3
ELSE IF( P.LT.0 ) THEN
INFO = -4
ELSE IF( SVLMAX.LT.ZERO ) THEN
INFO = -5
ELSE IF( LDABCD.LT.MAX( 1, PN ) ) THEN
INFO = -7
ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( TOL.GT.ONE ) THEN
INFO = -17
ELSE
WRKOPT = MAX( 1, 3*P )
IF( P.GT.0 ) THEN
IF( M.GT.0 ) THEN
WRKOPT = MAX( WRKOPT, MN-1 )
IF( FIRST ) THEN
WRKOPT = MAX( WRKOPT, MPM + MAX( 3*M-1, N ) )
IF( LQUERY ) THEN
NB = MIN( 64, ILAENV( 1, 'ZUNMQR', 'LC', P, N,
$ MPM, -1 ) )
WRKOPT = MAX( WRKOPT, MPM + MAX( 1, N )*NB )
END IF
END IF
END IF
END IF
IF( LZWORK.LT.WRKOPT .AND. .NOT.LQUERY ) THEN
INFO = -21
END IF
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'AG8BYZ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
ZWORK(1) = WRKOPT
RETURN
END IF
C
C Initialize output variables.
C
PR = P
NR = N
DINFZ = 0
NINFZ = 0
NKRONL = 0
C
C Quick return if possible.
C
IF( P.EQ.0 ) THEN
ZWORK(1) = CONE
RETURN
END IF
IF( N.EQ.0 .AND. M.EQ.0 ) THEN
PR = 0
NKRONL = 1
KRONL(1) = P
ZWORK(1) = CONE
RETURN
END IF
C
RCOND = TOL
IF( RCOND.LE.ZERO ) THEN
C
C Use the default tolerance in rank determination.
C
RCOND = DBLE( PN*MN )*DLAMCH( 'EPSILON' )
END IF
C
C The D matrix is (RO+SIGMA)-by-M, where RO = P - SIGMA and
C SIGMA = 0 for FIRST = .TRUE. and SIGMA = M for FIRST = .FALSE..
C The leading (RO+SIGMA)-by-SIGMA submatrix of D has full column
C rank, with the trailing SIGMA-by-SIGMA submatrix upper triangular.
C
IF( FIRST ) THEN
SIGMA = 0
ELSE
SIGMA = M
END IF
RO = P - SIGMA
MP1 = M + 1
MUI = 0
DUM(1) = CZERO
C
ITAU = 1
JWORK1 = ITAU + MPM
ISMIN = 1
ISMAX = ISMIN + P
JWORK2 = ISMAX + P
NBLCKS = 0
WRKOPT = 1
C
10 IF( PR.EQ.0 ) GO TO 90
C
C (NR+1,ICOL+1) points to the current position of matrix D.
C
RO1 = RO
MNR = M + NR
IF( M.GT.0 ) THEN
C
C Compress rows of D; first exploit the trapezoidal shape of the
C (RO+SIGMA)-by-SIGMA matrix in the first SIGMA columns of D;
C compress the first SIGMA columns without column pivoting:
C
C ( x x x x x ) ( x x x x x )
C ( x x x x x ) ( 0 x x x x )
C ( x x x x x ) - > ( 0 0 x x x )
C ( 0 x x x x ) ( 0 0 0 x x )
C ( 0 0 x x x ) ( 0 0 0 x x )
C
C where SIGMA = 3 and RO = 2.
C Complex workspace: need maximum M+N-1.
C
IROW = NR
DO 20 ICOL = 1, SIGMA
IROW = IROW + 1
CALL ZLARFG( RO+1, ABCD(IROW,ICOL), ABCD(IROW+1,ICOL), 1,
$ TC )
CALL ZLATZM( 'L', RO+1, MNR-ICOL, ABCD(IROW+1,ICOL), 1,
$ DCONJG( TC ), ABCD(IROW,ICOL+1),
$ ABCD(IROW+1,ICOL+1), LDABCD, ZWORK )
CALL ZCOPY( PR-ICOL, DUM, 0, ABCD(IROW+1,ICOL), 1 )
20 CONTINUE
WRKOPT = MAX( WRKOPT, MN - 1 )
C
IF( FIRST ) THEN
C
C Continue with Householder with column pivoting.
C
C ( x x x x x ) ( x x x x x )
C ( 0 x x x x ) ( 0 x x x x )
C ( 0 0 x x x ) - > ( 0 0 x x x )
C ( 0 0 0 x x ) ( 0 0 0 x x )
C ( 0 0 0 x x ) ( 0 0 0 0 0 )
C
C Real workspace: need maximum 2*M;
C Complex workspace: need maximum min(P,M)+3*M-1;
C Integer workspace: need maximum M.
C
IROW = MIN( NR+SIGMA+1, PN )
ICOL = MIN( SIGMA+1, M )
CALL MB3OYZ( RO1, M-SIGMA, ABCD(IROW,ICOL), LDABCD,
$ RCOND, SVLMAX, RANK, SVAL, IWORK, ZWORK(ITAU),
$ DWORK, ZWORK(JWORK1), INFO )
WRKOPT = MAX( WRKOPT, JWORK1 + 3*M - 2 )
C
C Apply the column permutations to B and part of D.
C
CALL ZLAPMT( .TRUE., NR+SIGMA, M-SIGMA, ABCD(1,ICOL),
$ LDABCD, IWORK )
C
IF( RANK.GT.0 ) THEN
C
C Apply the Householder transformations to the submatrix C.
C Complex workspace: need maximum min(P,M) + N;
C prefer maximum min(P,M) + N*NB.
C
CALL ZUNMQR( 'Left', 'ConjTranspose', RO1, NR, RANK,
$ ABCD(IROW,ICOL), LDABCD, ZWORK(ITAU),
$ ABCD(IROW,MP1), LDABCD, ZWORK(JWORK1),
$ LZWORK-JWORK1+1, INFO )
WRKOPT = MAX( WRKOPT, JWORK1 + INT( ZWORK(JWORK1) ) - 1 )
CALL ZLASET( 'Lower', RO1-1, MIN( RO1-1, RANK ), CZERO,
$ CZERO, ABCD(MIN( IROW+1, PN ),ICOL),
$ LDABCD )
RO1 = RO1 - RANK
END IF
END IF
C
C Terminate if Dr has maximal row rank.
C
IF( RO1.EQ.0 ) GO TO 90
C
END IF
C
C Update SIGMA.
C
SIGMA = PR - RO1
C
NBLCKS = NBLCKS + 1
TAUI = RO1
C
C Compress the columns of current C to separate a TAUI-by-MUI
C full column rank block.
C
IF( NR.EQ.0 ) THEN
C
C Finish for zero state dimension.
C
PR = SIGMA
RANK = 0
ELSE
C
C Perform RQ-decomposition with row pivoting on the current C
C while keeping E upper triangular.
C The current C is the TAUI-by-NR matrix delimited by rows
C IRC+1 to IRC+TAUI and columns M+1 to M+NR of ABCD.
C The rank of current C is computed in MUI.
C Real workspace: need maximum 2*P;
C Complex workspace: need maximum 3*P.
C
IRC = NR + SIGMA
N1 = NR
IF( TAUI.GT.1 ) THEN
C
C Compute norms.
C
DO 30 I = 1, TAUI
DWORK(I) = DZNRM2( NR, ABCD(IRC+I,MP1), LDABCD )
DWORK(P+I) = DWORK(I)
30 CONTINUE
END IF
C
RANK = 0
MNTAU = MIN( TAUI, NR )
C
C ICOL and IROW will point to the current pivot position in C.
C
ILAST = NR + PR
JLAST = M + NR
IROW = ILAST
ICOL = JLAST
I = TAUI
40 IF( RANK.LT.MNTAU ) THEN
MN1 = M + N1
C
C Pivot if necessary.
C
IF( I.NE.1 ) THEN
J = IDAMAX( I, DWORK, 1 )
IF( J.NE.I ) THEN
DWORK(J) = DWORK(I)
DWORK(P+J) = DWORK(P+I)
CALL ZSWAP( N1, ABCD(IROW,MP1), LDABCD,
$ ABCD(IRC+J,MP1), LDABCD )
END IF
END IF
C
C Zero elements left to ABCD(IROW,ICOL).
C
DO 50 K = 1, N1-1
J = M + K
C
C Rotate columns J, J+1 to zero ABCD(IROW,J).
C
TC = ABCD(IROW,J+1)
CALL ZLARTG( TC, ABCD(IROW,J), C, S, ABCD(IROW,J+1) )
ABCD(IROW,J) = CZERO
CALL ZROT( IROW-1, ABCD(1,J+1), 1, ABCD(1,J), 1, C, S )
CALL ZROT( K+1, E(1,K+1), 1, E(1,K), 1, C, S )
C
C Rotate rows K, K+1 to zero E(K+1,K).
C
TC = E(K,K)
CALL ZLARTG( TC, E(K+1,K), C, S, E(K,K) )
E(K+1,K) = CZERO
CALL ZROT( N1-K, E(K,K+1), LDE, E(K+1,K+1), LDE, C, S )
CALL ZROT( MN1, ABCD(K,1), LDABCD, ABCD(K+1,1), LDABCD,
$ C, S )
50 CONTINUE
C
IF( RANK.EQ.0 ) THEN
C
C Initialize; exit if matrix is zero (RANK = 0).
C
SMAX = ABS( ABCD(ILAST,JLAST) )
IF ( SMAX.EQ.ZERO ) GO TO 80
SMIN = SMAX
SMAXPR = SMAX
SMINPR = SMIN
C1 = CONE
C2 = CONE
ELSE
C
C One step of incremental condition estimation.
C Complex workspace: need maximum 3*P.
C
CALL ZCOPY( RANK, ABCD(IROW,ICOL+1), LDABCD,
$ ZWORK(JWORK2), 1 )
CALL ZLAIC1( IMIN, RANK, ZWORK(ISMIN), SMIN,
$ ZWORK(JWORK2), ABCD(IROW,ICOL), SMINPR, S1,
$ C1 )
CALL ZLAIC1( IMAX, RANK, ZWORK(ISMAX), SMAX,
$ ZWORK(JWORK2), ABCD(IROW,ICOL), SMAXPR, S2,
$ C2 )
WRKOPT = MAX( WRKOPT, 3*P )
END IF
C
C Check the rank; finish the loop if rank loss occurs.
C
IF( SVLMAX*RCOND.LE.SMAXPR ) THEN
IF( SVLMAX*RCOND.LE.SMINPR ) THEN
IF( SMAXPR*RCOND.LE.SMINPR ) THEN
C
C Finish the loop if last row.
C
IF( N1.EQ.0 ) THEN
RANK = RANK + 1
GO TO 80
END IF
C
IF( N1.GT.1 ) THEN
C
C Update norms.
C
IF( I-1.GT.1 ) THEN
DO 60 J = 1, I - 1
IF( DWORK(J).NE.ZERO ) THEN
T = ONE - ( ABS( ABCD(IRC+J,ICOL) )
$ /DWORK(J) )**2
T = MAX( T, ZERO )
TT = ONE +
$ P05*T*( DWORK(J)/DWORK(P+J) )**2
IF( TT.NE.ONE ) THEN
DWORK(J) = DWORK(J)*SQRT( T )
ELSE
DWORK(J) = DZNRM2( N1-1,
$ ABCD(IRC+J,MP1), LDABCD )
DWORK(P+J) = DWORK(J)
END IF
END IF
60 CONTINUE
END IF
END IF
C
DO 70 J = 1, RANK
ZWORK(ISMIN+J-1) = S1*ZWORK(ISMIN+J-1)
ZWORK(ISMAX+J-1) = S2*ZWORK(ISMAX+J-1)
70 CONTINUE
C
ZWORK(ISMIN+RANK) = C1
ZWORK(ISMAX+RANK) = C2
SMIN = SMINPR
SMAX = SMAXPR
RANK = RANK + 1
ICOL = ICOL - 1
IROW = IROW - 1
N1 = N1 - 1
I = I - 1
GO TO 40
END IF
END IF
END IF
END IF
END IF
C
80 CONTINUE
MUI = RANK
NR = NR - MUI
PR = SIGMA + MUI
C
C Set number of left Kronecker blocks of order (i-1)-by-i.
C
KRONL(NBLCKS) = TAUI - MUI
C
C Set number of infinite divisors of order i-1.
C
IF( FIRST .AND. NBLCKS.GT.1 )
$ INFZ(NBLCKS-1) = MUIM1 - TAUI
MUIM1 = MUI
RO = MUI
C
C Continue reduction if rank of current C is positive.
C
IF( MUI.GT.0 )
$ GO TO 10
C
C Determine the maximal degree of infinite zeros and
C the number of infinite zeros.
C
90 CONTINUE
IF( FIRST ) THEN
IF( MUI.EQ.0 ) THEN
DINFZ = MAX( 0, NBLCKS - 1 )
ELSE
DINFZ = NBLCKS
INFZ(NBLCKS) = MUI
END IF
K = DINFZ
DO 100 I = K, 1, -1
IF( INFZ(I).NE.0 ) GO TO 110
DINFZ = DINFZ - 1
100 CONTINUE
110 CONTINUE
DO 120 I = 1, DINFZ
NINFZ = NINFZ + INFZ(I)*I
120 CONTINUE
END IF
C
C Determine the maximal order of left elementary Kronecker blocks.
C
NKRONL = NBLCKS
DO 130 I = NBLCKS, 1, -1
IF( KRONL(I).NE.0 ) GO TO 140
NKRONL = NKRONL - 1
130 CONTINUE
140 CONTINUE
C
ZWORK(1) = WRKOPT
RETURN
C *** Last line of AG8BYZ ***
END
|