File: AG8BYZ.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (692 lines) | stat: -rw-r--r-- 23,634 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
      SUBROUTINE AG8BYZ( FIRST, N, M, P, SVLMAX, ABCD, LDABCD, E, LDE,
     $                   NR, PR, NINFZ, DINFZ, NKRONL, INFZ, KRONL,
     $                   TOL, IWORK, DWORK, ZWORK, LZWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To extract from the (N+P)-by-(M+N) descriptor system pencil
C
C        S(lambda) = ( B   A - lambda*E  )
C                    ( D        C        )
C
C     with E nonsingular and upper triangular a
C     (NR+PR)-by-(M+NR) "reduced" descriptor system pencil
C
C                           ( Br  Ar-lambda*Er )
C              Sr(lambda) = (                  )
C                           ( Dr     Cr        )
C
C     having the same finite Smith zeros as the pencil
C     S(lambda) but with Dr, a PR-by-M full row rank
C     left upper trapezoidal matrix, and Er, an NR-by-NR
C     upper triangular nonsingular matrix.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     FIRST   LOGICAL
C             Specifies if AG8BYZ is called first time or it is called
C             for an already reduced system, with D full column rank
C             with the last M rows in upper triangular form:
C             FIRST = .TRUE.,  first time called;
C             FIRST = .FALSE., not first time called.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of rows of matrix B, the number of columns of
C             matrix C and the order of square matrices A and E.
C             N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of matrices B and D.  M >= 0.
C             M <= P if FIRST = .FALSE. .
C
C     P       (input) INTEGER
C             The number of rows of matrices C and D.  P >= 0.
C
C     SVLMAX  (input) DOUBLE PRECISION
C             During each reduction step, the rank-revealing QR
C             factorization of a matrix stops when the estimated minimum
C             singular value is smaller than TOL * MAX(SVLMAX,EMSV),
C             where EMSV is the estimated maximum singular value.
C             SVLMAX >= 0.
C
C     ABCD    (input/output) COMPLEX*16 array, dimension (LDABCD,M+N)
C             On entry, the leading (N+P)-by-(M+N) part of this array
C             must contain the compound matrix
C                      (  B   A  ) ,
C                      (  D   C  )
C             where A is an N-by-N matrix, B is an N-by-M matrix,
C             C is a P-by-N matrix and D is a P-by-M matrix.
C             If FIRST = .FALSE., then D must be a full column
C             rank matrix with the last M rows in upper triangular form.
C             On exit, the leading (NR+PR)-by-(M+NR) part of ABCD
C             contains the reduced compound matrix
C                       (  Br  Ar ) ,
C                       (  Dr  Cr )
C             where Ar is an NR-by-NR matrix, Br is an NR-by-M matrix,
C             Cr is a PR-by-NR matrix, Dr is a PR-by-M full row rank
C             left upper trapezoidal matrix with the first PR columns
C             in upper triangular form.
C
C     LDABCD  INTEGER
C             The leading dimension of array ABCD.
C             LDABCD >= MAX(1,N+P).
C
C     E       (input/output) COMPLEX*16 array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the upper triangular nonsingular matrix E.
C             On exit, the leading NR-by-NR part contains the reduced
C             upper triangular nonsingular matrix Er.
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= MAX(1,N).
C
C     NR      (output) INTEGER
C             The order of the reduced matrices Ar and Er; also the
C             number of rows of the reduced matrix Br and the number
C             of columns of the reduced matrix Cr.
C             If Dr is invertible, NR is also the number of finite
C             Smith zeros.
C
C     PR      (output) INTEGER
C             The rank of the resulting matrix Dr; also the number of
C             rows of reduced matrices Cr and Dr.
C
C     NINFZ   (output) INTEGER
C             Number of infinite zeros.  NINFZ = 0 if FIRST = .FALSE. .
C
C     DINFZ   (output) INTEGER
C             The maximal multiplicity of infinite zeros.
C             DINFZ = 0 if FIRST = .FALSE. .
C
C     NKRONL  (output) INTEGER
C             The maximal dimension of left elementary Kronecker blocks.
C
C     INFZ    (output) INTEGER array, dimension (N)
C             INFZ(i) contains the number of infinite zeros of
C             degree i, where i = 1,2,...,DINFZ.
C             INFZ is not referenced if FIRST = .FALSE. .
C
C     KRONL   (output) INTEGER array, dimension (N+1)
C             KRONL(i) contains the number of left elementary Kronecker
C             blocks of dimension i-by-(i-1), where i = 1,2,...,NKRONL.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR (or RQ) factorization with column (or row) pivoting
C             whose estimated condition number is less than 1/TOL.
C             If the user sets TOL <= 0, then an implicitly computed,
C             default tolerance TOLDEF = (N+P)*(N+M)*EPS,  is used
C             instead, where EPS is the machine precision
C             (see LAPACK Library routine DLAMCH).
C             NOTE that when SVLMAX > 0, the estimated ranks could be
C             less than those defined above (see SVLMAX).  TOL <= 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (M)
C             If FIRST = .FALSE., IWORK is not referenced.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             LDWORK >= 2*MAX(M,P), if FIRST = .TRUE.;
C             LDWORK >= 2*P,        if FIRST = .FALSE. .
C
C     ZWORK   COMPLEX*16 array, dimension (LZWORK)
C             On exit, if INFO = 0, ZWORK(1) returns the optimal value
C             of LZWORK.
C
C     LZWORK  INTEGER
C             The length of the array ZWORK.
C             LZWORK >= 1, if P = 0; otherwise
C             LZWORK >= MAX( 1, N+M-1, MIN(P,M) + MAX(3*M-1,N), 3*P ),
C                                             if FIRST = .TRUE.;
C             LZWORK >= MAX( 1, N+M-1, 3*P ), if FIRST = .FALSE. .
C             The second term is not needed if M = 0.
C             For optimum performance LZWORK should be larger.
C
C             If LZWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             ZWORK array, returns this value as the first entry of
C             the ZWORK array, and no error message related to LZWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The subroutine is based on the reduction algorithm of [1].
C
C     REFERENCES
C
C     [1] P. Misra, P. Van Dooren and A. Varga.
C         Computation of structural invariants of generalized
C         state-space systems.
C         Automatica, 30, pp. 1921-1936, 1994.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable and requires
C     0( (P+N)*(M+N)*N )  floating point operations.
C
C     FURTHER COMMENTS
C
C     The number of infinite zeros is computed as
C
C                   DINFZ
C        NINFZ =     Sum  (INFZ(i)*i) .
C                    i=1
C     Note that each infinite zero of multiplicity k corresponds to
C     an infinite eigenvalue of multiplicity k+1.
C     The multiplicities of the infinite eigenvalues can be determined
C     from PR, DINFZ and INFZ(i), i = 1, ..., DINFZ, as follows:
C
C                     DINFZ
C     - there are PR - Sum (INFZ(i)) simple infinite eigenvalues;
C                      i=1
C
C     - there are INFZ(i) infinite eigenvalues with multiplicity i+1,
C       for i = 1, ..., DINFZ.
C
C     The left Kronecker indices are:
C
C     [ 0  0 ...  0  | 1  1  ...  1 |  .... | NKRONL  ...  NKRONL ]
C     |<- KRONL(1) ->|<- KRONL(2) ->|       |<-  KRONL(NKRONL)  ->|
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     May 1999.
C     Complex version: V. Sima, Research Institute for Informatics,
C     Bucharest, Nov. 2008.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Apr. 2009.
C
C     KEYWORDS
C
C     Generalized eigenvalue problem, Kronecker indices, multivariable
C     system, unitary transformation, structural invariant.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER            IMAX, IMIN
      PARAMETER          ( IMAX = 1, IMIN = 2 )
      DOUBLE PRECISION   ONE, P05, ZERO
      PARAMETER          ( ONE = 1.0D0, P05 = 0.05D0, ZERO = 0.0D0 )
      COMPLEX*16         CONE, CZERO
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
     $                    CZERO = ( 0.0D+0, 0.0D+0 ) )
C     .. Scalar Arguments ..
      INTEGER            DINFZ, INFO, LDABCD, LDE, LZWORK, M, N, NINFZ,
     $                   NKRONL, NR, P, PR
      DOUBLE PRECISION   SVLMAX, TOL
      LOGICAL            FIRST
C     .. Array Arguments ..
      INTEGER            INFZ( * ), IWORK(*), KRONL( * )
      DOUBLE PRECISION   DWORK( * )
      COMPLEX*16         ABCD( LDABCD, * ), E( LDE, * ), ZWORK( * )
C     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, ICOL, ILAST, IRC, IROW, ISMAX, ISMIN, ITAU,
     $                   J, JLAST, JWORK1, JWORK2, K, MN, MN1, MNR,
     $                   MNTAU, MP1, MPM, MUI, MUIM1, N1, NB, NBLCKS,
     $                   PN, RANK, RO, RO1, SIGMA, TAUI, WRKOPT
      DOUBLE PRECISION   C, RCOND, SMAX, SMAXPR, SMIN, SMINPR, T, TT
      COMPLEX*16         C1, C2, S, S1, S2, TC
C     .. Local Arrays ..
      DOUBLE PRECISION   SVAL(3)
      COMPLEX*16         DUM(1)
C     .. External Functions ..
      INTEGER            IDAMAX, ILAENV
      DOUBLE PRECISION   DLAMCH, DZNRM2
      EXTERNAL           DLAMCH, DZNRM2, IDAMAX, ILAENV
C     .. External Subroutines ..
      EXTERNAL           MB3OYZ, XERBLA, ZCOPY, ZLAIC1, ZLAPMT, ZLARFG,
     $                   ZLARTG, ZLASET, ZLATZM, ZROT, ZSWAP, ZUNMQR
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCONJG, INT, MAX, MIN, SQRT
C     .. Executable Statements ..
C
C     Test the input parameters.
C
      LQUERY = ( LZWORK.EQ.-1 )
      INFO = 0
      PN   = P + N
      MN   = M + N
      MPM  = MIN( P, M )
      IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 .OR. ( .NOT.FIRST .AND. M.GT.P ) ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( SVLMAX.LT.ZERO ) THEN
         INFO = -5
      ELSE IF( LDABCD.LT.MAX( 1, PN ) ) THEN
         INFO = -7
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( TOL.GT.ONE ) THEN
         INFO = -17
      ELSE
         WRKOPT = MAX( 1, 3*P )
         IF( P.GT.0 ) THEN
            IF( M.GT.0 ) THEN
               WRKOPT = MAX( WRKOPT, MN-1 )
               IF( FIRST ) THEN
                  WRKOPT = MAX( WRKOPT, MPM + MAX( 3*M-1, N ) )
                  IF( LQUERY ) THEN
                     NB = MIN( 64, ILAENV( 1, 'ZUNMQR', 'LC', P, N,
     $                                     MPM, -1 ) )
                     WRKOPT = MAX( WRKOPT, MPM + MAX( 1, N )*NB )
                  END IF
               END IF
            END IF
         END IF
         IF( LZWORK.LT.WRKOPT .AND. .NOT.LQUERY ) THEN
            INFO = -21
         END IF
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'AG8BYZ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         ZWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Initialize output variables.
C
      PR = P
      NR = N
      DINFZ  = 0
      NINFZ  = 0
      NKRONL = 0
C
C     Quick return if possible.
C
      IF( P.EQ.0 ) THEN
         ZWORK(1) = CONE
         RETURN
      END IF
      IF( N.EQ.0 .AND. M.EQ.0 ) THEN
         PR = 0
         NKRONL   = 1
         KRONL(1) = P
         ZWORK(1) = CONE
         RETURN
      END IF
C
      RCOND = TOL
      IF( RCOND.LE.ZERO ) THEN
C
C        Use the default tolerance in rank determination.
C
         RCOND = DBLE( PN*MN )*DLAMCH( 'EPSILON' )
      END IF
C
C     The D matrix is (RO+SIGMA)-by-M, where RO = P - SIGMA and
C     SIGMA = 0 for FIRST = .TRUE. and SIGMA = M for FIRST = .FALSE..
C     The leading (RO+SIGMA)-by-SIGMA submatrix of D has full column
C     rank, with the trailing SIGMA-by-SIGMA submatrix upper triangular.
C
      IF( FIRST ) THEN
         SIGMA = 0
      ELSE
         SIGMA = M
      END IF
      RO  = P - SIGMA
      MP1 = M + 1
      MUI = 0
      DUM(1) = CZERO
C
      ITAU   = 1
      JWORK1 = ITAU + MPM
      ISMIN  = 1
      ISMAX  = ISMIN + P
      JWORK2 = ISMAX + P
      NBLCKS = 0
      WRKOPT = 1
C
   10 IF( PR.EQ.0 ) GO TO 90
C
C     (NR+1,ICOL+1) points to the current position of matrix D.
C
      RO1 = RO
      MNR = M + NR
      IF( M.GT.0 ) THEN
C
C        Compress rows of D; first exploit the trapezoidal shape of the
C        (RO+SIGMA)-by-SIGMA matrix in the first SIGMA columns of D;
C        compress the first SIGMA columns without column pivoting:
C
C              ( x x x x x )       ( x x x x x )
C              ( x x x x x )       ( 0 x x x x )
C              ( x x x x x )  - >  ( 0 0 x x x )
C              ( 0 x x x x )       ( 0 0 0 x x )
C              ( 0 0 x x x )       ( 0 0 0 x x )
C
C        where SIGMA = 3 and RO = 2.
C        Complex workspace: need maximum M+N-1.
C
         IROW = NR
         DO 20 ICOL = 1, SIGMA
            IROW = IROW + 1
            CALL ZLARFG( RO+1, ABCD(IROW,ICOL), ABCD(IROW+1,ICOL), 1,
     $                   TC )
            CALL ZLATZM( 'L', RO+1, MNR-ICOL, ABCD(IROW+1,ICOL), 1,
     $                   DCONJG( TC ), ABCD(IROW,ICOL+1),
     $                   ABCD(IROW+1,ICOL+1), LDABCD, ZWORK )
            CALL ZCOPY( PR-ICOL, DUM, 0, ABCD(IROW+1,ICOL), 1 )
   20    CONTINUE
         WRKOPT = MAX( WRKOPT, MN - 1 )
C
         IF( FIRST ) THEN
C
C           Continue with Householder with column pivoting.
C
C              ( x x x x x )        ( x x x x x )
C              ( 0 x x x x )        ( 0 x x x x )
C              ( 0 0 x x x )  - >   ( 0 0 x x x )
C              ( 0 0 0 x x )        ( 0 0 0 x x )
C              ( 0 0 0 x x )        ( 0 0 0 0 0 )
C
C           Real workspace:    need maximum 2*M;
C           Complex workspace: need maximum min(P,M)+3*M-1;
C           Integer workspace: need maximum M.
C
            IROW = MIN( NR+SIGMA+1, PN )
            ICOL = MIN( SIGMA+1, M )
            CALL MB3OYZ( RO1, M-SIGMA, ABCD(IROW,ICOL), LDABCD,
     $                   RCOND, SVLMAX, RANK, SVAL, IWORK, ZWORK(ITAU),
     $                   DWORK, ZWORK(JWORK1), INFO )
            WRKOPT = MAX( WRKOPT, JWORK1 + 3*M - 2 )
C
C           Apply the column permutations to B and part of D.
C
            CALL ZLAPMT( .TRUE., NR+SIGMA, M-SIGMA, ABCD(1,ICOL),
     $                   LDABCD, IWORK )
C
            IF( RANK.GT.0 ) THEN
C
C              Apply the Householder transformations to the submatrix C.
C              Complex workspace: need   maximum min(P,M) + N;
C                                 prefer maximum min(P,M) + N*NB.
C
               CALL ZUNMQR( 'Left', 'ConjTranspose', RO1, NR, RANK,
     $                      ABCD(IROW,ICOL), LDABCD, ZWORK(ITAU),
     $                      ABCD(IROW,MP1), LDABCD, ZWORK(JWORK1),
     $                      LZWORK-JWORK1+1, INFO )
               WRKOPT = MAX( WRKOPT, JWORK1 + INT( ZWORK(JWORK1) ) - 1 )
               CALL ZLASET( 'Lower', RO1-1, MIN( RO1-1, RANK ), CZERO,
     $                      CZERO, ABCD(MIN( IROW+1, PN ),ICOL),
     $                      LDABCD )
               RO1 = RO1 - RANK
            END IF
         END IF
C
C        Terminate if Dr has maximal row rank.
C
         IF( RO1.EQ.0 ) GO TO 90
C
      END IF
C
C     Update SIGMA.
C
      SIGMA = PR - RO1
C
      NBLCKS = NBLCKS + 1
      TAUI = RO1
C
C     Compress the columns of current C to separate a TAUI-by-MUI
C     full column rank block.
C
      IF( NR.EQ.0 ) THEN
C
C        Finish for zero state dimension.
C
         PR = SIGMA
         RANK = 0
      ELSE
C
C        Perform RQ-decomposition with row pivoting on the current C
C        while keeping E upper triangular.
C        The current C is the TAUI-by-NR matrix delimited by rows
C        IRC+1 to IRC+TAUI and columns M+1 to M+NR of ABCD.
C        The rank of current C is computed in MUI.
C        Real workspace:    need maximum 2*P;
C        Complex workspace: need maximum 3*P.
C
         IRC = NR + SIGMA
         N1  = NR
         IF( TAUI.GT.1 ) THEN
C
C           Compute norms.
C
            DO 30 I = 1, TAUI
               DWORK(I) = DZNRM2( NR, ABCD(IRC+I,MP1), LDABCD )
               DWORK(P+I) = DWORK(I)
   30       CONTINUE
         END IF
C
         RANK  = 0
         MNTAU = MIN( TAUI, NR )
C
C        ICOL and IROW will point to the current pivot position in C.
C
         ILAST = NR + PR
         JLAST = M  + NR
         IROW = ILAST
         ICOL = JLAST
         I = TAUI
   40    IF( RANK.LT.MNTAU ) THEN
            MN1 = M + N1
C
C           Pivot if necessary.
C
            IF( I.NE.1 ) THEN
               J = IDAMAX( I, DWORK, 1 )
               IF( J.NE.I ) THEN
                  DWORK(J) = DWORK(I)
                  DWORK(P+J) = DWORK(P+I)
                  CALL ZSWAP( N1, ABCD(IROW,MP1), LDABCD,
     $                        ABCD(IRC+J,MP1), LDABCD )
               END IF
            END IF
C
C           Zero elements left to ABCD(IROW,ICOL).
C
            DO 50 K = 1, N1-1
               J = M + K
C
C              Rotate columns J, J+1 to zero ABCD(IROW,J).
C
               TC = ABCD(IROW,J+1)
               CALL ZLARTG( TC, ABCD(IROW,J), C, S, ABCD(IROW,J+1) )
               ABCD(IROW,J) = CZERO
               CALL ZROT( IROW-1, ABCD(1,J+1), 1, ABCD(1,J), 1, C, S )
               CALL ZROT( K+1, E(1,K+1), 1, E(1,K), 1, C, S )
C
C              Rotate rows K, K+1 to zero E(K+1,K).
C
               TC = E(K,K)
               CALL ZLARTG( TC, E(K+1,K), C, S, E(K,K) )
               E(K+1,K) = CZERO
               CALL ZROT( N1-K, E(K,K+1), LDE, E(K+1,K+1), LDE, C, S )
               CALL ZROT( MN1, ABCD(K,1), LDABCD, ABCD(K+1,1), LDABCD,
     $                    C, S )
   50       CONTINUE
C
            IF( RANK.EQ.0 ) THEN
C
C              Initialize; exit if matrix is zero (RANK = 0).
C
               SMAX = ABS( ABCD(ILAST,JLAST) )
               IF ( SMAX.EQ.ZERO ) GO TO 80
               SMIN   = SMAX
               SMAXPR = SMAX
               SMINPR = SMIN
               C1 = CONE
               C2 = CONE
            ELSE
C
C              One step of incremental condition estimation.
C              Complex workspace: need maximum 3*P.
C
               CALL ZCOPY(  RANK, ABCD(IROW,ICOL+1), LDABCD,
     $                      ZWORK(JWORK2), 1 )
               CALL ZLAIC1( IMIN, RANK, ZWORK(ISMIN), SMIN,
     $                      ZWORK(JWORK2), ABCD(IROW,ICOL), SMINPR, S1,
     $                      C1 )
               CALL ZLAIC1( IMAX, RANK, ZWORK(ISMAX), SMAX,
     $                      ZWORK(JWORK2), ABCD(IROW,ICOL), SMAXPR, S2,
     $                      C2 )
               WRKOPT = MAX( WRKOPT, 3*P )
            END IF
C
C           Check the rank; finish the loop if rank loss occurs.
C
            IF( SVLMAX*RCOND.LE.SMAXPR ) THEN
               IF( SVLMAX*RCOND.LE.SMINPR ) THEN
                  IF( SMAXPR*RCOND.LE.SMINPR ) THEN
C
C                    Finish the loop if last row.
C
                     IF( N1.EQ.0 ) THEN
                        RANK = RANK + 1
                        GO TO 80
                     END IF
C
                     IF( N1.GT.1 ) THEN
C
C                       Update norms.
C
                        IF( I-1.GT.1 ) THEN
                           DO 60 J = 1, I - 1
                              IF( DWORK(J).NE.ZERO ) THEN
                                 T = ONE - ( ABS( ABCD(IRC+J,ICOL) )
     $                                   /DWORK(J) )**2
                                 T = MAX( T, ZERO )
                                 TT = ONE +
     $                                P05*T*( DWORK(J)/DWORK(P+J) )**2
                                 IF( TT.NE.ONE ) THEN
                                    DWORK(J) = DWORK(J)*SQRT( T )
                                 ELSE
                                    DWORK(J) = DZNRM2( N1-1,
     $                                         ABCD(IRC+J,MP1), LDABCD )
                                    DWORK(P+J) = DWORK(J)
                                 END IF
                              END IF
   60                      CONTINUE
                        END IF
                     END IF
C
                     DO 70 J = 1, RANK
                        ZWORK(ISMIN+J-1) = S1*ZWORK(ISMIN+J-1)
                        ZWORK(ISMAX+J-1) = S2*ZWORK(ISMAX+J-1)
   70                CONTINUE
C
                     ZWORK(ISMIN+RANK) = C1
                     ZWORK(ISMAX+RANK) = C2
                     SMIN = SMINPR
                     SMAX = SMAXPR
                     RANK = RANK + 1
                     ICOL = ICOL - 1
                     IROW = IROW - 1
                     N1 = N1 - 1
                     I  = I  - 1
                     GO TO 40
                  END IF
               END IF
            END IF
         END IF
      END IF
C
   80 CONTINUE
      MUI = RANK
      NR  = NR - MUI
      PR  = SIGMA + MUI
C
C     Set number of left Kronecker blocks of order (i-1)-by-i.
C
      KRONL(NBLCKS) = TAUI - MUI
C
C     Set number of infinite divisors of order i-1.
C
      IF( FIRST .AND. NBLCKS.GT.1 )
     $   INFZ(NBLCKS-1) = MUIM1 - TAUI
      MUIM1 = MUI
      RO = MUI
C
C     Continue reduction if rank of current C is positive.
C
      IF( MUI.GT.0 )
     $   GO TO 10
C
C     Determine the maximal degree of infinite zeros and
C     the number of infinite zeros.
C
   90 CONTINUE
      IF( FIRST ) THEN
         IF( MUI.EQ.0 ) THEN
            DINFZ = MAX( 0, NBLCKS - 1 )
         ELSE
            DINFZ = NBLCKS
            INFZ(NBLCKS) = MUI
         END IF
         K = DINFZ
         DO 100 I = K, 1, -1
            IF( INFZ(I).NE.0 ) GO TO 110
            DINFZ = DINFZ - 1
  100    CONTINUE
  110    CONTINUE
         DO 120 I = 1, DINFZ
            NINFZ = NINFZ + INFZ(I)*I
  120    CONTINUE
      END IF
C
C     Determine the maximal order of left elementary Kronecker blocks.
C
      NKRONL = NBLCKS
      DO 130 I = NBLCKS, 1, -1
         IF( KRONL(I).NE.0 ) GO TO 140
         NKRONL = NKRONL - 1
  130 CONTINUE
  140 CONTINUE
C
      ZWORK(1) = WRKOPT
      RETURN
C *** Last line of AG8BYZ ***
      END