1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
|
SUBROUTINE BB01AD(DEF, NR, DPAR, IPAR, BPAR, CHPAR, VEC, N, M, P,
1 A, LDA, B, LDB, C, LDC, G, LDG, Q, LDQ, X, LDX,
2 DWORK, LDWORK, INFO)
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To generate the benchmark examples for the numerical solution of
C continuous-time algebraic Riccati equations (CAREs) of the form
C
C 0 = Q + A'X + XA - XGX
C
C corresponding to the Hamiltonian matrix
C
C ( A G )
C H = ( T ).
C ( Q -A )
C
C A,G,Q,X are real N-by-N matrices, Q and G are symmetric and may
C be given in factored form
C
C -1 T T
C (I) G = B R B , (II) Q = C W C .
C
C Here, C is P-by-N, W P-by-P, B N-by-M, and R M-by-M, where W
C and R are symmetric. In linear-quadratic optimal control problems,
C usually W is positive semidefinite and R positive definite. The
C factorized form can be used if the CARE is solved using the
C deflating subspaces of the extended Hamiltonian pencil
C
C ( A 0 B ) ( I 0 0 )
C ( T ) ( )
C H - s K = ( Q A 0 ) - s ( 0 -I 0 ) ,
C ( T ) ( )
C ( 0 B R ) ( 0 0 0 )
C
C where I and 0 denote the identity and zero matrix, respectively,
C of appropriate dimensions.
C
C NOTE: the formulation of the CARE and the related matrix (pencils)
C used here does not include CAREs as they arise in robust
C control (H_infinity optimization).
C
C ARGUMENTS
C
C Mode Parameters
C
C DEF CHARACTER
C This parameter specifies if the default parameters are
C to be used or not.
C = 'N' or 'n' : The parameters given in the input vectors
C xPAR (x = 'D', 'I', 'B', 'CH') are used.
C = 'D' or 'd' : The default parameters for the example
C are used.
C This parameter is not meaningful if NR(1) = 1.
C
C Input/Output Parameters
C
C NR (input) INTEGER array, dimension (2)
C This array determines the example for which CAREX returns
C data. NR(1) is the group of examples.
C NR(1) = 1 : parameter-free problems of fixed size.
C NR(1) = 2 : parameter-dependent problems of fixed size.
C NR(1) = 3 : parameter-free problems of scalable size.
C NR(1) = 4 : parameter-dependent problems of scalable size.
C NR(2) is the number of the example in group NR(1).
C Let NEXi be the number of examples in group i. Currently,
C NEX1 = 6, NEX2 = 9, NEX3 = 2, NEX4 = 4.
C 1 <= NR(1) <= 4;
C 1 <= NR(2) <= NEXi , where i = NR(1).
C
C DPAR (input/output) DOUBLE PRECISION array, dimension (7)
C Double precision parameter vector. For explanation of the
C parameters see [1].
C DPAR(1) : defines the parameters
C 'delta' for NR(1) = 3,
C 'q' for NR(1).NR(2) = 4.1,
C 'a' for NR(1).NR(2) = 4.2, and
C 'mu' for NR(1).NR(2) = 4.3.
C DPAR(2) : defines parameters
C 'r' for NR(1).NR(2) = 4.1,
C 'b' for NR(1).NR(2) = 4.2, and
C 'delta' for NR(1).NR(2) = 4.3.
C DPAR(3) : defines parameters
C 'c' for NR(1).NR(2) = 4.2 and
C 'kappa' for NR(1).NR(2) = 4.3.
C DPAR(j), j=4,5,6,7: These arguments are only used to
C generate Example 4.2 and define in
C consecutive order the intervals
C ['beta_1', 'beta_2'],
C ['gamma_1', 'gamma_2'].
C NOTE that if DEF = 'D' or 'd', the values of DPAR entries
C on input are ignored and, on output, they are overwritten
C with the default parameters.
C
C IPAR (input/output) INTEGER array, dimension (3)
C On input, IPAR(1) determines the actual state dimension,
C i.e., the order of the matrix A as follows, where
C NO = NR(1).NR(2).
C NR(1) = 1 or 2.1-2.8: IPAR(1) is ignored.
C NO = 2.9 : IPAR(1) = 1 generates the CARE for
C optimal state feedback (default);
C IPAR(1) = 2 generates the Kalman
C filter CARE.
C NO = 3.1 : IPAR(1) is the number of vehicles
C (parameter 'l' in the description
C in [1]).
C NO = 3.2, 4.1 or 4.2: IPAR(1) is the order of the matrix
C A.
C NO = 4.3 or 4.4 : IPAR(1) determines the dimension of
C the second-order system, i.e., the
C order of the stiffness matrix for
C Examples 4.3 and 4.4 (parameter 'l'
C in the description in [1]).
C
C The order of the output matrix A is N = 2*IPAR(1) for
C Example 4.3 and N = 2*IPAR(1)-1 for Examples 3.1 and 4.4.
C NOTE that IPAR(1) is overwritten for Examples 1.1-2.8. For
C the other examples, IPAR(1) is overwritten if the default
C parameters are to be used.
C On output, IPAR(1) contains the order of the matrix A.
C
C On input, IPAR(2) is the number of colums in the matrix B
C in (I) (in control problems, the number of inputs of the
C system). Currently, IPAR(2) is fixed or determined by
C IPAR(1) for all examples and thus is not referenced on
C input.
C On output, IPAR(2) is the number of columns of the
C matrix B from (I).
C NOTE that currently IPAR(2) is overwritten and that
C rank(G) <= IPAR(2).
C
C On input, IPAR(3) is the number of rows in the matrix C
C in (II) (in control problems, the number of outputs of the
C system). Currently, IPAR(3) is fixed or determined by
C IPAR(1) for all examples and thus is not referenced on
C input.
C On output, IPAR(3) contains the number of rows of the
C matrix C in (II).
C NOTE that currently IPAR(3) is overwritten and that
C rank(Q) <= IPAR(3).
C
C BPAR (input) BOOLEAN array, dimension (6)
C This array defines the form of the output of the examples
C and the storage mode of the matrices G and Q.
C BPAR(1) = .TRUE. : G is returned.
C BPAR(1) = .FALSE. : G is returned in factored form, i.e.,
C B and R from (I) are returned.
C BPAR(2) = .TRUE. : The matrix returned in array G (i.e.,
C G if BPAR(1) = .TRUE. and R if
C BPAR(1) = .FALSE.) is stored as full
C matrix.
C BPAR(2) = .FALSE. : The matrix returned in array G is
C provided in packed storage mode.
C BPAR(3) = .TRUE. : If BPAR(2) = .FALSE., the matrix
C returned in array G is stored in upper
C packed mode, i.e., the upper triangle
C of a symmetric n-by-n matrix is stored
C by columns, e.g., the matrix entry
C G(i,j) is stored in the array entry
C G(i+j*(j-1)/2) for i <= j.
C Otherwise, this entry is ignored.
C BPAR(3) = .FALSE. : If BPAR(2) = .FALSE., the matrix
C returned in array G is stored in lower
C packed mode, i.e., the lower triangle
C of a symmetric n-by-n matrix is stored
C by columns, e.g., the matrix entry
C G(i,j) is stored in the array entry
C G(i+(2*n-j)*(j-1)/2) for j <= i.
C Otherwise, this entry is ignored.
C BPAR(4) = .TRUE. : Q is returned.
C BPAR(4) = .FALSE. : Q is returned in factored form, i.e.,
C C and W from (II) are returned.
C BPAR(5) = .TRUE. : The matrix returned in array Q (i.e.,
C Q if BPAR(4) = .TRUE. and W if
C BPAR(4) = .FALSE.) is stored as full
C matrix.
C BPAR(5) = .FALSE. : The matrix returned in array Q is
C provided in packed storage mode.
C BPAR(6) = .TRUE. : If BPAR(5) = .FALSE., the matrix
C returned in array Q is stored in upper
C packed mode (see above).
C Otherwise, this entry is ignored.
C BPAR(6) = .FALSE. : If BPAR(5) = .FALSE., the matrix
C returned in array Q is stored in lower
C packed mode (see above).
C Otherwise, this entry is ignored.
C NOTE that there are no default values for BPAR. If all
C entries are declared to be .TRUE., then matrices G and Q
C are returned in conventional storage mode, i.e., as
C N-by-N arrays where the array element Z(I,J) contains the
C matrix entry Z_{i,j}.
C
C CHPAR (input/output) CHARACTER*255
C On input, this is the name of a data file supplied by the
C user.
C In the current version, only Example 4.4 allows a
C user-defined data file. This file must contain
C consecutively DOUBLE PRECISION vectors mu, delta, gamma,
C and kappa. The length of these vectors is determined by
C the input value for IPAR(1).
C If on entry, IPAR(1) = L, then mu and delta must each
C contain L DOUBLE PRECISION values, and gamma and kappa
C must each contain L-1 DOUBLE PRECISION values.
C On output, this string contains short information about
C the chosen example.
C
C VEC (output) LOGICAL array, dimension (9)
C Flag vector which displays the availability of the output
C data:
C VEC(j), j=1,2,3, refer to N, M, and P, respectively, and
C are always .TRUE.
C VEC(4) refers to A and is always .TRUE.
C VEC(5) is .TRUE. if BPAR(1) = .FALSE., i.e., the factors B
C and R from (I) are returned.
C VEC(6) is .TRUE. if BPAR(4) = .FALSE., i.e., the factors C
C and W from (II) are returned.
C VEC(7) refers to G and is always .TRUE.
C VEC(8) refers to Q and is always .TRUE.
C VEC(9) refers to X and is .TRUE. if the exact solution
C matrix is available.
C NOTE that VEC(i) = .FALSE. for i = 1 to 9 if on exit
C INFO .NE. 0.
C
C N (output) INTEGER
C The order of the matrices A, X, G if BPAR(1) = .TRUE., and
C Q if BPAR(4) = .TRUE.
C
C M (output) INTEGER
C The number of columns in the matrix B (or the dimension of
C the control input space of the underlying dynamical
C system).
C
C P (output) INTEGER
C The number of rows in the matrix C (or the dimension of
C the output space of the underlying dynamical system).
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array contains the
C coefficient matrix A of the CARE.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= N.
C
C B (output) DOUBLE PRECISION array, dimension (LDB,M)
C If (BPAR(1) = .FALSE.), then the leading N-by-M part of
C this array contains the matrix B of the factored form (I)
C of G. Otherwise, B is used as workspace.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= N.
C
C C (output) DOUBLE PRECISION array, dimension (LDC,N)
C If (BPAR(4) = .FALSE.), then the leading P-by-N part of
C this array contains the matrix C of the factored form (II)
C of Q. Otherwise, C is used as workspace.
C
C LDC INTEGER
C The leading dimension of array C.
C LDC >= P, where P is the number of rows of the matrix C,
C i.e., the output value of IPAR(3). (For all examples,
C P <= N, where N equals the output value of the argument
C IPAR(1), i.e., LDC >= LDA is always safe.)
C
C G (output) DOUBLE PRECISION array, dimension (NG)
C If (BPAR(2) = .TRUE.) then NG = LDG*N.
C If (BPAR(2) = .FALSE.) then NG = N*(N+1)/2.
C If (BPAR(1) = .TRUE.), then array G contains the
C coefficient matrix G of the CARE.
C If (BPAR(1) = .FALSE.), then array G contains the 'control
C weighting matrix' R of G's factored form as in (I). (For
C all examples, M <= N.) The symmetric matrix contained in
C array G is stored according to BPAR(2) and BPAR(3).
C
C LDG INTEGER
C If conventional storage mode is used for G, i.e.,
C BPAR(2) = .TRUE., then G is stored like a 2-dimensional
C array with leading dimension LDG. If packed symmetric
C storage mode is used, then LDG is not referenced.
C LDG >= N if BPAR(2) = .TRUE..
C
C Q (output) DOUBLE PRECISION array, dimension (NQ)
C If (BPAR(5) = .TRUE.) then NQ = LDQ*N.
C If (BPAR(5) = .FALSE.) then NQ = N*(N+1)/2.
C If (BPAR(4) = .TRUE.), then array Q contains the
C coefficient matrix Q of the CARE.
C If (BPAR(4) = .FALSE.), then array Q contains the 'output
C weighting matrix' W of Q's factored form as in (II).
C The symmetric matrix contained in array Q is stored
C according to BPAR(5) and BPAR(6).
C
C LDQ INTEGER
C If conventional storage mode is used for Q, i.e.,
C BPAR(5) = .TRUE., then Q is stored like a 2-dimensional
C array with leading dimension LDQ. If packed symmetric
C storage mode is used, then LDQ is not referenced.
C LDQ >= N if BPAR(5) = .TRUE..
C
C X (output) DOUBLE PRECISION array, dimension (LDX,IPAR(1))
C If an exact solution is available (NR = 1.1, 1.2, 2.1,
C 2.3-2.6, 3.2), then the leading N-by-N part of this array
C contains the solution matrix X in conventional storage
C mode. Otherwise, X is not referenced.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= 1, and
C LDX >= N if NR = 1.1, 1.2, 2.1, 2.3-2.6, 3.2.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= N*MAX(4,N).
C
C Error Indicator
C
C INFO INTEGER
C = 0 : successful exit;
C < 0 : if INFO = -i, the i-th argument had an illegal
C value;
C = 1 : data file could not be opened or had wrong format;
C = 2 : division by zero;
C = 3 : G can not be computed as in (I) due to a singular R
C matrix.
C
C REFERENCES
C
C [1] Abels, J. and Benner, P.
C CAREX - A Collection of Benchmark Examples for Continuous-Time
C Algebraic Riccati Equations (Version 2.0).
C SLICOT Working Note 1999-14, November 1999. Available from
C http://www.win.tue.nl/niconet/NIC2/reports.html.
C
C This is an updated and extended version of
C
C [2] Benner, P., Laub, A.J., and Mehrmann, V.
C A Collection of Benchmark Examples for the Numerical Solution
C of Algebraic Riccati Equations I: Continuous-Time Case.
C Technical Report SPC 95_22, Fak. f. Mathematik,
C TU Chemnitz-Zwickau (Germany), October 1995.
C
C NUMERICAL ASPECTS
C
C If the original data as taken from the literature is given via
C matrices G and Q, but factored forms are requested as output, then
C these factors are obtained from Cholesky or LDL' decompositions of
C G and Q, i.e., the output data will be corrupted by roundoff
C errors.
C
C FURTHER COMMENTS
C
C Some benchmark examples read data from the data files provided
C with the collection.
C
C CONTRIBUTOR
C
C Peter Benner (Universitaet Bremen), November 15, 1999.
C
C For questions concerning the collection or for the submission of
C test examples, please send e-mail to benner@math.uni-bremen.de.
C
C REVISIONS
C
C 1999, December 23 (V. Sima).
C
C KEYWORDS
C
C Algebraic Riccati equation, Hamiltonian matrix.
C
C ******************************************************************
C
C .. Parameters ..
C . # of examples available , # of examples with fixed size. .
INTEGER NEX1, NEX2, NEX3, NEX4, NMAX
PARAMETER ( NMAX = 9, NEX1 = 6, NEX2 = 9, NEX3 = 2,
1 NEX4 = 4 )
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, PI
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
1 THREE = 3.0D0, FOUR = 4.0D0,
2 PI = .3141592653589793D1 )
C
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDG, LDQ, LDWORK, LDX, M, N,
$ P
CHARACTER DEF
C
C .. Array Arguments ..
INTEGER IPAR(3), NR(2)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DPAR(*), DWORK(*),
1 G(*), Q(*), X(LDX,*)
CHARACTER CHPAR*255
LOGICAL BPAR(6), VEC(9)
C
C .. Local Scalars ..
INTEGER GDIMM, I, IOS, ISYMM, J, K, L, MSYMM, NSYMM, POS,
1 PSYMM, QDIMM
DOUBLE PRECISION APPIND, B1, B2, C1, C2, SUM, TEMP, TTEMP
C
C ..Local Arrays ..
INTEGER MDEF(2,NMAX), NDEF(4,NMAX), NEX(4), PDEF(2,NMAX)
DOUBLE PRECISION PARDEF(4,NMAX)
CHARACTER IDENT*4
CHARACTER*255 NOTES(4,NMAX)
C
C .. External Functions ..
C . BLAS .
DOUBLE PRECISION DDOT
EXTERNAL DDOT
C . LAPACK .
LOGICAL LSAME
DOUBLE PRECISION DLAPY2
EXTERNAL LSAME, DLAPY2
C
C .. External Subroutines ..
C . BLAS .
EXTERNAL DCOPY, DGEMV, DSCAL, DSPMV, DSPR, DSYMM, DSYRK
C . LAPACK .
EXTERNAL DLASET, DPPTRF, DPPTRI, DPTTRF, DPTTRS, XERBLA
C . SLICOT .
EXTERNAL MA02DD, MA02ED
C
C .. Intrinsic Functions ..
INTRINSIC COS, MAX, MIN, MOD, SQRT
C
C .. Data Statements ..
C . default values for dimensions .
DATA (NEX(I), I = 1, 4) /NEX1, NEX2, NEX3, NEX4/
DATA (NDEF(1,I), I = 1, NEX1) /2, 2, 4, 8, 9, 30/
DATA (NDEF(2,I), I = 1, NEX2) /2, 2, 2, 2, 2, 3, 4, 4, 55/
DATA (NDEF(3,I), I = 1, NEX3) /20, 64/
DATA (NDEF(4,I), I = 1, NEX4) /21, 100, 30, 211/
DATA (MDEF(1,I), I = 1, NEX1) /1, 1, 2, 2, 3, 3/
DATA (MDEF(2,I), I = 1, NEX2) /1, 2, 1, 2, 1, 3, 1, 1, 2/
DATA (PDEF(1,I), I = 1, NEX1) /2, 2, 4, 8, 9, 5/
DATA (PDEF(2,I), I = 1, NEX2) /1, 1, 2, 2, 2, 3, 2, 1, 10/
C . default values for parameters .
DATA (PARDEF(1,I), I = 1, NEX1) /ZERO, ZERO, ZERO, ZERO, ZERO,
1 ZERO/
DATA (PARDEF(2,I), I = 1, NEX2) /.1D-5, .1D-7, .1D7, .1D-6, ZERO,
1 .1D7, .1D-5, .1D-5, .1D1/
DATA (PARDEF(3,I), I = 1, NEX3) /ZERO, ZERO/
DATA (PARDEF(4,I), I = 1, NEX4) /ONE, .1D-1, FOUR, ZERO/
C . comments on examples .
DATA (NOTES(1,I), I = 1, NEX1) /
1'Laub 1979, Ex.1', 'Laub 1979, Ex.2: uncontrollable-unobservable d
2ata', 'Beale/Shafai 1989: model of L-1011 aircraft', 'Bhattacharyy
3a et al. 1983: binary distillation column', 'Patnaik et al. 1980:
4tubular ammonia reactor', 'Davison/Gesing 1978: J-100 jet engine'/
DATA (NOTES(2,I), I = 1, NEX2) /
1'Arnold/Laub 1984, Ex.1: (A,B) unstabilizable as EPS -> 0', 'Arnol
2d/Laub 1984, Ex.3: control weighting matrix singular as EPS -> 0',
3'Kenney/Laub/Wette 1989, Ex.2: ARE ill conditioned for EPS -> oo',
4'Bai/Qian 1994: ill-conditioned Hamiltonian for EPS -> 0', 'Laub 1
5992: H-infinity problem, eigenvalues +/- EPS +/- i', 'Petkov et a
6l. 1987: increasingly badly scaled Hamiltonian as EPS -> oo', 'Cho
7w/Kokotovic 1976: magnetic tape control system', 'Arnold/Laub 1984
8, Ex.2: poor sep. of closed-loop spectrum as EPS -> 0', 'IFAC Benc
9hmark Problem #90-06: LQG design for modified Boing B-767 at flutt
1er condition'/
DATA (NOTES(3,I), I = 1, NEX3) /
1'Laub 1979, Ex.4: string of high speed vehicles', 'Laub 1979, Ex.5
2: circulant matrices'/
DATA (NOTES(4,I), I = 1, NEX4) /
1'Laub 1979, Ex.6: ill-conditioned Riccati equation', 'Rosen/Wang 1
2992: lq control of 1-dimensional heat flow','Hench et al. 1995: co
3upled springs, dashpots and masses','Lang/Penzl 1994: rotating axl
4e' /
C
C .. Executable Statements ..
C
INFO = 0
DO 5 I = 1, 9
VEC(I) = .FALSE.
5 CONTINUE
C
IF ((NR(1) .NE. 1) .AND. (.NOT. (LSAME(DEF,'N')
1 .OR. LSAME(DEF,'D')))) THEN
INFO = -1
ELSE IF ((NR(1) .LT. 1) .OR. (NR(2) .LT. 1) .OR.
1 (NR(1) .GT. 4) .OR. (NR(2) .GT. NEX(NR(1)))) THEN
INFO = -2
ELSE IF (NR(1) .GT. 2) THEN
IF (.NOT. LSAME(DEF,'N')) IPAR(1) = NDEF(NR(1),NR(2))
IF (NR(1) .EQ. 3) THEN
IF (NR(2) .EQ. 1) THEN
IPAR(2) = IPAR(1)
IPAR(3) = IPAR(1) - 1
IPAR(1) = 2*IPAR(1) - 1
ELSE IF (NR(2) .EQ. 2) THEN
IPAR(2) = IPAR(1)
IPAR(3) = IPAR(1)
ELSE
IPAR(2) = 1
IPAR(3) = 1
END IF
ELSE IF (NR(1) .EQ. 4) THEN
IF (NR(2) .EQ. 3) THEN
L = IPAR(1)
IPAR(2) = 2
IPAR(3) = 2*L
IPAR(1) = 2*L
ELSE IF (NR(2) .EQ. 4) THEN
L = IPAR(1)
IPAR(2) = L
IPAR(3) = L
IPAR(1) = 2*L-1
ELSE
IPAR(2) = 1
IPAR(3) = 1
END IF
END IF
ELSE IF ((NR(1) .EQ. 2) .AND. (NR(2) .EQ. 9) .AND.
1 (IPAR(1) . EQ. 2)) THEN
IPAR(1) = NDEF(NR(1),NR(2))
IPAR(2) = MDEF(NR(1),NR(2))
IPAR(3) = 3
ELSE
IPAR(1) = NDEF(NR(1),NR(2))
IPAR(2) = MDEF(NR(1),NR(2))
IPAR(3) = PDEF(NR(1),NR(2))
END IF
IF (INFO .NE. 0) GOTO 7
C
IF (IPAR(1) .LT. 1) THEN
INFO = -4
ELSE IF (IPAR(1) .GT. LDA) THEN
INFO = -12
ELSE IF (IPAR(1) .GT. LDB) THEN
INFO = -14
ELSE IF (IPAR(3) .GT. LDC) THEN
INFO = -16
ELSE IF (BPAR(2) .AND. (IPAR(1).GT. LDG)) THEN
INFO = -18
ELSE IF (BPAR(5) .AND. (IPAR(1).GT. LDQ)) THEN
INFO = -20
ELSE IF (LDX.LT.1) THEN
INFO = -22
ELSE IF ((NR(1) .EQ. 1) .AND.
$ ((NR(2) .EQ. 1) .OR. (NR(2) .EQ.2))) THEN
IF (IPAR(1) .GT. LDX) INFO = -22
ELSE IF ((NR(1) .EQ. 2) .AND. (NR(2) .EQ. 1)) THEN
IF (IPAR(1) .GT. LDX) INFO = -22
ELSE IF ((NR(1) .EQ. 2) .AND. ((NR(2) .GE. 3) .AND.
1 (NR(2) .LE. 6))) THEN
IF (IPAR(1) .GT. LDX) INFO = -22
ELSE IF ((NR(1) .EQ. 3) .AND. (NR(2) .EQ. 2)) THEN
IF (IPAR(1) .GT. LDX) INFO = -22
ELSE IF (LDWORK .LT. N*(MAX(4,N))) THEN
INFO = -24
END IF
C
7 CONTINUE
IF (INFO .NE. 0) THEN
CALL XERBLA( 'BB01AD', -INFO )
RETURN
END IF
C
NSYMM = (IPAR(1)*(IPAR(1)+1))/2
MSYMM = (IPAR(2)*(IPAR(2)+1))/2
PSYMM = (IPAR(3)*(IPAR(3)+1))/2
IF (.NOT. LSAME(DEF,'N')) DPAR(1) = PARDEF(NR(1),NR(2))
C
CALL DLASET('A', IPAR(1), IPAR(1), ZERO, ZERO, A, LDA)
CALL DLASET('A', IPAR(1), IPAR(2), ZERO, ZERO, B, LDB)
CALL DLASET('A', IPAR(3), IPAR(1), ZERO, ZERO, C, LDC)
CALL DLASET('L', MSYMM, 1, ZERO, ZERO, G, 1)
CALL DLASET('L', PSYMM, 1, ZERO, ZERO, Q, 1)
C
IF (NR(1) .EQ. 1) THEN
IF (NR(2) .EQ. 1) THEN
A(1,2) = ONE
B(2,1) = ONE
Q(1) = ONE
Q(3) = TWO
IDENT = '0101'
CALL DLASET('A', IPAR(1), IPAR(1), ONE, TWO, X, LDX)
C
ELSE IF (NR(2) .EQ. 2) THEN
A(1,1) = FOUR
A(2,1) = -.45D1
A(1,2) = THREE
A(2,2) = -.35D1
CALL DLASET('A', IPAR(1), IPAR(2), -ONE, ONE, B, LDB)
Q(1) = 9.0D0
Q(2) = 6.0D0
Q(3) = FOUR
IDENT = '0101'
TEMP = ONE + SQRT(TWO)
CALL DLASET('A', IPAR(1), IPAR(1), 6.0D0*TEMP, FOUR*TEMP, X,
1 LDX)
X(1,1) = 9.0D0*TEMP
C
ELSE IF ((NR(2) .GE. 3) .AND. (NR(2) .LE. 6)) THEN
WRITE (CHPAR(1:11), '(A,I1,A,I1,A)') 'BB01', NR(1), '0',
1 NR(2) , '.dat'
IF ((NR(2) .EQ. 3) .OR. (NR(2) .EQ. 4)) THEN
IDENT = '0101'
ELSE IF (NR(2) .EQ. 5) THEN
IDENT = '0111'
ELSE IF (NR(2) .EQ. 6) THEN
IDENT = '0011'
END IF
OPEN(1, IOSTAT = IOS, STATUS = 'OLD', FILE = CHPAR(1:11))
IF (IOS .NE. 0) THEN
INFO = 1
ELSE IF (NR(2) .LE. 6) THEN
DO 10 I = 1, IPAR(1)
READ (1, FMT = *, IOSTAT = IOS)
1 (A(I,J), J = 1, IPAR(1))
IF (IOS .NE. 0) INFO = 1
10 CONTINUE
DO 20 I = 1, IPAR(1)
READ (1, FMT = *, IOSTAT = IOS)
1 (B(I,J), J = 1, IPAR(2))
IF (IOS .NE. 0) INFO = 1
20 CONTINUE
IF (NR(2) .LE. 4) THEN
DO 30 I = 1, IPAR(1)
POS = (I-1)*IPAR(1)
READ (1, FMT = *, IOSTAT = IOS) (DWORK(POS+J),
1 J = 1,IPAR(1))
30 CONTINUE
IF (IOS .NE. 0) THEN
INFO = 1
ELSE
CALL MA02DD('Pack', 'Lower', IPAR(1), DWORK, IPAR(1), Q)
END IF
ELSE IF (NR(2) .EQ. 6) THEN
DO 35 I = 1, IPAR(3)
READ (1, FMT = *, IOSTAT = IOS)
1 (C(I,J), J = 1, IPAR(1))
IF (IOS .NE. 0) INFO = 1
35 CONTINUE
END IF
CLOSE(1)
END IF
END IF
C
ELSE IF (NR(1) .EQ. 2) THEN
IF (NR(2) .EQ. 1) THEN
A(1,1) = ONE
A(2,2) = -TWO
B(1,1) = DPAR(1)
CALL DLASET('U', IPAR(3), IPAR(1), ONE, ONE, C, LDC)
IDENT = '0011'
IF (DPAR(1) .NE. ZERO) THEN
TEMP = DLAPY2(ONE, DPAR(1))
X(1,1) = (ONE + TEMP)/DPAR(1)/DPAR(1)
X(2,1) = ONE/(TWO + TEMP)
X(1,2) = X(2,1)
TTEMP = DPAR(1)*X(1,2)
TEMP = (ONE - TTEMP) * (ONE + TTEMP)
X(2,2) = TEMP / FOUR
ELSE
INFO = 2
END IF
C
ELSE IF (NR(2) .EQ. 2) THEN
A(1,1) = -.1D0
A(2,2) = -.2D-1
B(1,1) = .1D0
B(2,1) = .1D-2
B(2,2) = .1D-1
CALL DLASET('L', MSYMM, 1, ONE, ONE, G, MSYMM)
G(1) = G(1) + DPAR(1)
C(1,1) = .1D2
C(1,2) = .1D3
IDENT = '0010'
C
ELSE IF (NR(2) .EQ. 3) THEN
A(1,2) = DPAR(1)
B(2,1) = ONE
IDENT = '0111'
IF (DPAR(1) .NE. ZERO) THEN
TEMP = SQRT(ONE + TWO*DPAR(1))
CALL DLASET('A', IPAR(1), IPAR(1), ONE, TEMP, X, LDX)
X(1,1) = X(1,1)/DPAR(1)
ELSE
INFO = 2
END IF
C
ELSE IF (NR(2) .EQ. 4) THEN
TEMP = DPAR(1) + ONE
CALL DLASET('A', IPAR(1), IPAR(1), ONE, TEMP, A, LDA)
Q(1) = DPAR(1)**2
Q(3) = Q(1)
IDENT = '1101'
X(1,1) = TWO*TEMP + SQRT(TWO)*(SQRT(TEMP**2 + ONE) + DPAR(1))
X(1,1) = X(1,1)/TWO
X(2,2) = X(1,1)
TTEMP = X(1,1) - TEMP
IF (TTEMP .NE. ZERO) THEN
X(2,1) = X(1,1) / TTEMP
X(1,2) = X(2,1)
ELSE
INFO = 2
END IF
C
ELSE IF (NR(2) .EQ. 5) THEN
A(1,1) = THREE - DPAR(1)
A(2,1) = FOUR
A(1,2) = ONE
A(2,2) = TWO - DPAR(1)
CALL DLASET('L', IPAR(1), IPAR(2), ONE, ONE, B, LDB)
Q(1) = FOUR*DPAR(1) - 11.0D0
Q(2) = TWO*DPAR(1) - 5.0D0
Q(3) = TWO*DPAR(1) - TWO
IDENT = '0101'
CALL DLASET('A', IPAR(1), IPAR(1), ONE, ONE, X, LDX)
X(1,1) = TWO
C
ELSE IF (NR(2) .EQ. 6) THEN
IF (DPAR(1) .NE. ZERO) THEN
A(1,1) = DPAR(1)
A(2,2) = DPAR(1)*TWO
A(3,3) = DPAR(1)*THREE
C .. set C = V ..
TEMP = TWO/THREE
CALL DLASET('A', IPAR(3), IPAR(1), -TEMP, ONE - TEMP,
1 C, LDC)
CALL DSYMM('L', 'L', IPAR(1), IPAR(1), ONE, C, LDC, A, LDA,
1 ZERO, DWORK, IPAR(1))
CALL DSYMM('R', 'L', IPAR(1), IPAR(1), ONE, C, LDC, DWORK,
1 IPAR(1), ZERO, A, LDA)
C .. G = R ! ..
G(1) = DPAR(1)
G(4) = DPAR(1)
G(6) = DPAR(1)
Q(1) = ONE/DPAR(1)
Q(4) = ONE
Q(6) = DPAR(1)
IDENT = '1000'
CALL DLASET('A', IPAR(1), IPAR(1), ZERO, ZERO, X, LDX)
TEMP = DPAR(1)**2
X(1,1) = TEMP + SQRT(TEMP**2 + ONE)
X(2,2) = TEMP*TWO + SQRT(FOUR*TEMP**2 + DPAR(1))
X(3,3) = TEMP*THREE + DPAR(1)*SQRT(9.0D0*TEMP + ONE)
CALL DSYMM('L', 'L', IPAR(1), IPAR(1), ONE, C, LDC, X, LDX,
1 ZERO, DWORK, IPAR(1))
CALL DSYMM('R', 'L', IPAR(1), IPAR(1), ONE, C, LDC, DWORK,
1 IPAR(1), ZERO, X, LDX)
ELSE
INFO = 2
END IF
C
ELSE IF (NR(2) .EQ. 7) THEN
IF (DPAR(1) .NE. ZERO) THEN
A(1,2) = .400D0
A(2,3) = .345D0
A(3,2) = -.524D0/DPAR(1)
A(3,3) = -.465D0/DPAR(1)
A(3,4) = .262D0/DPAR(1)
A(4,4) = -ONE/DPAR(1)
B(4,1) = ONE/DPAR(1)
C(1,1) = ONE
C(2,3) = ONE
IDENT = '0011'
ELSE
INFO = 2
END IF
C
ELSE IF (NR(2) .EQ. 8) THEN
A(1,1) = -DPAR(1)
A(2,1) = -ONE
A(1,2) = ONE
A(2,2) = -DPAR(1)
A(3,3) = DPAR(1)
A(4,3) = -ONE
A(3,4) = ONE
A(4,4) = DPAR(1)
CALL DLASET('L', IPAR(1), IPAR(2), ONE, ONE, B, LDB)
CALL DLASET('U', IPAR(3), IPAR(1), ONE, ONE, C, LDC)
IDENT = '0011'
C
ELSE IF (NR(2) .EQ. 9) THEN
IF (IPAR(3) .EQ. 10) THEN
C .. read LQR CARE ...
WRITE (CHPAR(1:12), '(A,I1,A,I1,A)') 'BB01', NR(1), '0',
1 NR(2), '1.dat'
OPEN(1, IOSTAT = IOS, STATUS = 'OLD', FILE = CHPAR(1:12))
IF (IOS .NE. 0) THEN
INFO = 1
ELSE
DO 36 I = 1, 27, 2
READ (1, FMT = *, IOSTAT = IOS)
1 ((A(I+J,I+K), K = 0, 1), J = 0, 1)
IF (IOS .NE. 0) INFO = 1
36 CONTINUE
DO 37 I = 30, 44, 2
READ (1, FMT = *, IOSTAT = IOS)
1 ((A(I+J,I+K), K = 0, 1), J = 0, 1)
IF (IOS .NE. 0) INFO = 1
37 CONTINUE
DO 38 I = 1, IPAR(1)
READ (1, FMT = *, IOSTAT = IOS)
1 (A(I,J), J = 46, IPAR(1))
IF (IOS .NE. 0) INFO = 1
38 CONTINUE
A(29,29) = -.5301D1
B(48,1) = .8D06
B(51,2) = .8D06
G(1) = .3647D03
G(3) = .1459D02
DO 39 I = 1,6
READ (1, FMT = *, IOSTAT = IOS)
1 (C(I,J), J = 1,45)
IF (IOS .NE. 0) INFO = 1
39 CONTINUE
C(7,47) = ONE
C(8,46) = ONE
C(9,50) = ONE
C(10,49) = ONE
Q(11) = .376D-13
Q(20) = .120D-12
Q(41) = .245D-11
END IF
ELSE
C .. read Kalman filter CARE ..
WRITE (CHPAR(1:12), '(A,I1,A,I1,A)') 'BB01', NR(1), '0',
1 NR(2), '2.dat'
OPEN(1, IOSTAT = IOS, STATUS = 'OLD', FILE = CHPAR(1:12))
IF (IOS .NE. 0) THEN
INFO = 1
ELSE
DO 40 I = 1, 27, 2
READ (1, FMT = *, IOSTAT = IOS)
1 ((A(I+K,I+J), K = 0, 1), J = 0, 1)
IF (IOS .NE. 0) INFO = 1
40 CONTINUE
DO 41 I = 30, 44, 2
READ (1, FMT = *, IOSTAT = IOS)
1 ((A(I+K,I+J), K = 0, 1), J = 0, 1)
IF (IOS .NE. 0) INFO = 1
41 CONTINUE
DO 42 I = 1, IPAR(1)
READ (1, FMT = *, IOSTAT = IOS)
1 (A(J,I), J = 46, IPAR(1))
IF (IOS .NE. 0) INFO = 1
42 CONTINUE
A(29,29) = -.5301D1
DO 43 J = 1, IPAR(2)
READ (1, FMT = *, IOSTAT = IOS)
1 (B(I,J), I = 1, IPAR(1))
IF (IOS .NE. 0) INFO = 1
43 CONTINUE
G(1) = .685D-5
G(3) = .373D3
C(1,52) = .3713
C(1,53) = .1245D1
C(2,48) = .8D6
C(2,54) = ONE
C(3,51) = .8D6
C(3,55) = ONE
Q(1) = .28224D5
Q(4) = .2742D-4
Q(6) = .6854D-3
END IF
END IF
CLOSE(1)
IDENT = '0000'
END IF
C
ELSE IF (NR(1) .EQ. 3) THEN
IF (NR(2) .EQ. 1) THEN
DO 45 I = 1, IPAR(1)
IF (MOD(I,2) .EQ. 1) THEN
A(I,I) = -ONE
B(I,(I+1)/2) = ONE
ELSE
A(I,I-1) = ONE
A(I,I+1) = -ONE
C(I/2,I) = ONE
END IF
45 CONTINUE
ISYMM = 1
DO 50 I = IPAR(3), 1, -1
Q(ISYMM) = 10.0D0
ISYMM = ISYMM + I
50 CONTINUE
IDENT = '0001'
C
ELSE IF (NR(2) .EQ. 2) THEN
DO 60 I = 1, IPAR(1)
A(I,I) = -TWO
IF (I .LT. IPAR(1)) THEN
A(I,I+1) = ONE
A(I+1,I) = ONE
END IF
60 CONTINUE
A(1,IPAR(1)) = ONE
A(IPAR(1),1) = ONE
IDENT = '1111'
TEMP = TWO * PI / DBLE(IPAR(1))
DO 70 I = 1, IPAR(1)
DWORK(I) = COS(TEMP*DBLE(I-1))
DWORK(IPAR(1)+I) = -TWO + TWO*DWORK(I) +
1 SQRT(5.0D0 + FOUR*DWORK(I)*(DWORK(I) - TWO))
70 CONTINUE
DO 90 J = 1, IPAR(1)
DO 80 I = 1, IPAR(1)
DWORK(2*IPAR(1)+I) = COS(TEMP*DBLE(I-1)*DBLE(J-1))
80 CONTINUE
X(J,1) = DDOT(IPAR(1), DWORK(IPAR(1)+1), 1,
1 DWORK(2*IPAR(1)+1), 1)/DBLE(IPAR(1))
90 CONTINUE
C .. set up circulant solution matrix ..
DO 100 I = 2, IPAR(1)
CALL DCOPY(IPAR(1)-I+1, X(1,1), 1, X(I,I), 1)
CALL DCOPY(I-1, X(IPAR(1)-I+2,1), 1, X(1,I), 1)
100 CONTINUE
END IF
C
ELSE IF (NR(1) .EQ. 4) THEN
IF (NR(2) .EQ. 1) THEN
C .. set up remaining parameter ..
IF (.NOT. LSAME(DEF,'N')) THEN
DPAR(1) = ONE
DPAR(2) = ONE
END IF
CALL DLASET('A', IPAR(1)-1, IPAR(1)-1, ZERO, ONE, A(1,2), LDA)
B(IPAR(1),1) = ONE
C(1,1) = ONE
Q(1) = DPAR(1)
G(1) = DPAR(2)
IDENT = '0000'
C
ELSE IF (NR(2) .EQ. 2) THEN
C .. set up remaining parameters ..
APPIND = DBLE(IPAR(1) + 1)
IF (.NOT. LSAME(DEF,'N')) THEN
DPAR(1) = PARDEF(NR(1), NR(2))
DPAR(2) = ONE
DPAR(3) = ONE
DPAR(4) = .2D0
DPAR(5) = .3D0
DPAR(6) = .2D0
DPAR(7) = .3D0
END IF
C .. set up stiffness matrix ..
TEMP = -DPAR(1)*APPIND
CALL DLASET('A', IPAR(1), IPAR(1), ZERO, TWO*TEMP, A, LDA)
DO 110 I = 1, IPAR(1) - 1
A(I+1,I) = -TEMP
A(I,I+1) = -TEMP
110 CONTINUE
C .. set up Gramian, stored by diagonals ..
TEMP = ONE/(6.0D0*APPIND)
CALL DLASET('L', IPAR(1), 1, FOUR*TEMP, FOUR*TEMP, DWORK,
1 IPAR(1))
CALL DLASET('L', IPAR(1)-1, 1, TEMP, TEMP, DWORK(IPAR(1)+1),
1 IPAR(1))
CALL DPTTRF(IPAR(1), DWORK(1), DWORK(IPAR(1)+1), INFO)
C .. A = (inverse of Gramian) * (stiffness matrix) ..
CALL DPTTRS(IPAR(1), IPAR(1), DWORK(1), DWORK(IPAR(1)+1),
1 A, LDA, INFO)
C .. compute B, C ..
DO 120 I = 1, IPAR(1)
B1 = MAX(DBLE(I-1)/APPIND, DPAR(4))
B2 = MIN(DBLE(I+1)/APPIND, DPAR(5))
C1 = MAX(DBLE(I-1)/APPIND, DPAR(6))
C2 = MIN(DBLE(I+1)/APPIND, DPAR(7))
IF (B1 .GE. B2) THEN
B(I,1) = ZERO
ELSE
B(I,1) = B2 - B1
TEMP = MIN(B2, DBLE(I)/APPIND)
IF (B1 .LT. TEMP) THEN
B(I,1) = B(I,1) + APPIND*(TEMP**2 - B1**2)/TWO
B(I,1) = B(I,1) + DBLE(I)*(B1 - TEMP)
END IF
TEMP = MAX(B1, DBLE(I)/APPIND)
IF (TEMP .LT. B2) THEN
B(I,1) = B(I,1) - APPIND*(B2**2 - TEMP**2)/TWO
B(I,1) = B(I,1) - DBLE(I)*(TEMP - B2)
END IF
END IF
IF (C1 .GE. C2) THEN
C(1,I) = ZERO
ELSE
C(1,I) = C2 - C1
TEMP = MIN(C2, DBLE(I)/APPIND)
IF (C1 .LT. TEMP) THEN
C(1,I) = C(1,I) + APPIND*(TEMP**2 - C1**2)/TWO
C(1,I) = C(1,I) + DBLE(I)*(C1 - TEMP)
END IF
TEMP = MAX(C1, DBLE(I)/APPIND)
IF (TEMP .LT. C2) THEN
C(1,I) = C(1,I) - APPIND*(C2**2 - TEMP**2)/TWO
C(1,I) = C(1,I) - DBLE(I)*(TEMP - C2)
END IF
END IF
120 CONTINUE
CALL DSCAL(IPAR(1), DPAR(2), B(1,1), 1)
CALL DSCAL(IPAR(1), DPAR(3), C(1,1), LDC)
CALL DPTTRS(IPAR(1), 1, DWORK(1), DWORK(IPAR(1)+1), B, LDB,
1 INFO)
IDENT = '0011'
C
ELSE IF (NR(2) .EQ. 3) THEN
C .. set up remaining parameters ..
IF (.NOT. LSAME(DEF,'N')) THEN
DPAR(1) = PARDEF(NR(1),NR(2))
DPAR(2) = FOUR
DPAR(3) = ONE
END IF
IF (DPAR(1) . NE. 0) THEN
CALL DLASET('A', L, L, ZERO, ONE, A(1,L+1), LDA)
TEMP = DPAR(3) / DPAR(1)
A(L+1,1) = -TEMP
A(L+1,2) = TEMP
A(IPAR(1),L-1) = TEMP
A(IPAR(1),L) = -TEMP
TTEMP = TWO*TEMP
DO 130 I = 2, L-1
A(L+I,I) = -TTEMP
A(L+I,I+1) = TEMP
A(L+I,I-1) = TEMP
130 CONTINUE
CALL DLASET('A', L, L, ZERO, -DPAR(2)/DPAR(1), A(L+1,L+1),
1 LDA)
B(L+1,1) = ONE / DPAR(1)
B(IPAR(1),IPAR(2)) = -ONE / DPAR(1)
IDENT = '0111'
ELSE
INFO = 2
END IF
C
ELSE IF (NR(2) .EQ. 4) THEN
IF (.NOT. LSAME(DEF,'N')) WRITE (CHPAR(1:11), '(A,I1,A,I1,A)')
1 'BB01', NR(1), '0', NR(2), '.dat'
OPEN(1, IOSTAT = IOS, STATUS = 'OLD', FILE = CHPAR(1:11))
IF (IOS .NE. 0) THEN
INFO = 1
ELSE
READ (1, FMT = *, IOSTAT = IOS) (DWORK(I), I = 1, 4*L-2)
IF (IOS .NE. 0) INFO = 1
END IF
CLOSE(1)
IF (INFO .EQ. 0) THEN
CALL DLASET('A', L-1, L-1, ZERO, ONE, A(L+1,2), LDA)
POS = 2*L + 1
A(1,2) = - DWORK(POS) / DWORK(1)
DO 140 I = 2, L
TEMP = DWORK(POS) / DWORK(I-1)
TTEMP = DWORK(POS) / DWORK(I)
IF (I .GT. 2) A(I-1,I) = TEMP
A(I,I) = -(TEMP + TTEMP)
IF (I .LT. L) A(I+1,I) = TTEMP
POS = POS + 1
140 CONTINUE
POS = L
TEMP = DWORK(POS+1) / DWORK(1)
A(1,1) = -TEMP
DO 160 I = 2, L
TTEMP = TEMP
TEMP = DWORK(POS+I) / DWORK(I)
SUM = TTEMP - TEMP
A(I,1) = -SUM
A(I,I) = A(I,I) - TEMP
DO 150 J = 2, I-2
A(I,J) = SUM
150 CONTINUE
IF (I .GT. 2) A(I,I-1) = A(I,I-1) + SUM
160 CONTINUE
POS = 3*L
A(1,L+1) = -DWORK(3*L)/DWORK(1)
DO 170 I = 2, L
TEMP = DWORK(POS) / DWORK(I-1)
TTEMP = DWORK(POS) / DWORK(I)
IF (I .GT. 2) A(I-1,L+I-1) = TEMP
A(I,L+I-1) = -(TEMP + TTEMP)
IF (I .LT. L) A(I+1,L+I-1) = TTEMP
POS = POS + 1
170 CONTINUE
B(1,1) = ONE/DWORK(1)
DO 180 I = 1, L
TEMP = ONE/DWORK(I)
IF (I .GT. 1) B(I,I) = -TEMP
IF (I .LT. L) B(I+1,I) = TEMP
180 CONTINUE
C(1,1) = ONE
Q(1) = ONE
POS = 2*L - 1
ISYMM = L + 1
DO 190 I = 2, L
TEMP = DWORK(POS+I)
TTEMP = DWORK(POS+L+I-1)
C(I,I) = TEMP
C(I,L+I-1) = TTEMP
Q(ISYMM) = ONE / (TEMP*TEMP + TTEMP*TTEMP)
ISYMM = ISYMM + L - I + 1
190 CONTINUE
IDENT = '0001'
END IF
END IF
END IF
C
IF (INFO .NE. 0) GOTO 2001
C .. set up data in required format ..
C
IF (BPAR(1)) THEN
C .. G is to be returned in product form ..
GDIMM = IPAR(1)
IF (IDENT(4:4) .EQ. '0') THEN
C .. invert R using Cholesky factorization, store in G ..
CALL DPPTRF('L', IPAR(2), G, INFO)
IF (INFO .EQ. 0) THEN
CALL DPPTRI('L', IPAR(2), G, INFO)
IF (IDENT(1:1) .EQ. '0') THEN
C .. B is not identity matrix ..
DO 200 I = 1, IPAR(1)
CALL DSPMV('L', IPAR(2), ONE, G, B(I,1), LDB, ZERO,
1 DWORK((I-1)*IPAR(1)+1), 1)
200 CONTINUE
CALL DGEMV('T', IPAR(2), IPAR(1), ONE, DWORK, IPAR(1),
1 B(1,1), LDB, ZERO, G, 1)
ISYMM = IPAR(1) + 1
DO 210 I = 2, IPAR(1)
CALL DGEMV('T', IPAR(2), IPAR(1), ONE, DWORK, IPAR(1),
1 B(I,1), LDB, ZERO, B(1,1), LDB)
CALL DCOPY(IPAR(1) - I + 1, B(1,I), LDB, G(ISYMM), 1)
ISYMM = ISYMM + (IPAR(1) - I + 1)
210 CONTINUE
END IF
ELSE
IF (INFO .GT. 0) THEN
INFO = 3
GOTO 2001
END IF
END IF
ELSE
C .. R = identity ..
IF (IDENT(1:1) .EQ. '0') THEN
C .. B is not identity matrix ..
IF (IPAR(2) .EQ. 1) THEN
CALL DLASET('L', NSYMM, 1, ZERO, ZERO, G, 1)
CALL DSPR('L', IPAR(1), ONE, B, 1, G)
ELSE
CALL DSYRK('L', 'N', IPAR(1), IPAR(2), ONE,
1 B, LDB, ZERO, DWORK, IPAR(1))
CALL MA02DD('Pack', 'Lower', IPAR(1), DWORK, IPAR(1), G)
END IF
ELSE
C .. B = R = identity ..
ISYMM = 1
DO 220 I = IPAR(1), 1, -1
G(ISYMM) = ONE
ISYMM = ISYMM + I
220 CONTINUE
END IF
END IF
ELSE
GDIMM = IPAR(2)
IF (IDENT(1:1) .EQ. '1')
1 CALL DLASET('A', IPAR(1), IPAR(2), ZERO, ONE, B, LDB)
IF (IDENT(4:4) .EQ. '1') THEN
ISYMM = 1
DO 230 I = IPAR(2), 1, -1
G(ISYMM) = ONE
ISYMM = ISYMM + I
230 CONTINUE
END IF
END IF
C
IF (BPAR(4)) THEN
C .. Q is to be returned in product form ..
QDIMM = IPAR(1)
IF (IDENT(3:3) .EQ. '0') THEN
IF (IDENT(2:2) .EQ. '0') THEN
C .. C is not identity matrix ..
DO 240 I = 1, IPAR(1)
CALL DSPMV('L', IPAR(3), ONE, Q, C(1,I), 1, ZERO,
1 DWORK((I-1)*IPAR(1)+1), 1)
240 CONTINUE
C .. use Q(1:IPAR(1)) as workspace and compute the first column
C of Q in the end ..
ISYMM = IPAR(1) + 1
DO 250 I = 2, IPAR(1)
CALL DGEMV('T', IPAR(3), IPAR(1), ONE, DWORK, IPAR(1),
1 C(1,I), 1, ZERO, Q(1), 1)
CALL DCOPY(IPAR(1) - I + 1, Q(I), 1, Q(ISYMM), 1)
ISYMM = ISYMM + (IPAR(1) - I + 1)
250 CONTINUE
CALL DGEMV('T', IPAR(3), IPAR(1), ONE, DWORK, IPAR(1),
1 C(1,1), 1, ZERO, Q, 1)
END IF
ELSE
C .. Q = identity ..
IF (IDENT(2:2) .EQ. '0') THEN
C .. C is not identity matrix ..
IF (IPAR(3) .EQ. 1) THEN
CALL DLASET('L', NSYMM, 1, ZERO, ZERO, Q, 1)
CALL DSPR('L', IPAR(1), ONE, C, LDC, Q)
ELSE
CALL DSYRK('L', 'T', IPAR(1), IPAR(3), ONE, C, LDC,
1 ZERO, DWORK, IPAR(1))
CALL MA02DD('Pack', 'Lower', IPAR(1), DWORK, IPAR(1), Q)
END IF
ELSE
C .. C = Q = identity ..
ISYMM = 1
DO 260 I = IPAR(1), 1, -1
Q(ISYMM) = ONE
ISYMM = ISYMM + I
260 CONTINUE
END IF
END IF
ELSE
QDIMM = IPAR(3)
IF (IDENT(2:2) .EQ. '1')
1 CALL DLASET('A', IPAR(3), IPAR(1), ZERO, ONE, C, LDC)
IF (IDENT(3:3) .EQ. '1') THEN
ISYMM = 1
DO 270 I = IPAR(3), 1, -1
Q(ISYMM) = ONE
ISYMM = ISYMM + I
270 CONTINUE
END IF
END IF
C
C .. unpack symmetric matrices if desired ..
IF (BPAR(2)) THEN
ISYMM = (GDIMM * (GDIMM + 1)) / 2
CALL DCOPY(ISYMM, G, 1, DWORK, 1)
CALL MA02DD('Unpack', 'Lower', GDIMM, G, LDG, DWORK)
CALL MA02ED('Lower', GDIMM, G, LDG)
ELSE IF (BPAR(3)) THEN
CALL MA02DD('Unpack', 'Lower', GDIMM, DWORK, GDIMM, G)
CALL MA02ED('Lower', GDIMM, DWORK, GDIMM)
CALL MA02DD('Pack', 'Upper', GDIMM, DWORK, GDIMM, G)
END IF
IF (BPAR(5)) THEN
ISYMM = (QDIMM * (QDIMM + 1)) / 2
CALL DCOPY(ISYMM, Q, 1, DWORK, 1)
CALL MA02DD('Unpack', 'Lower', QDIMM, Q, LDQ, DWORK)
CALL MA02ED('Lower', QDIMM, Q, LDQ)
ELSE IF (BPAR(6)) THEN
CALL MA02DD('Unpack', 'Lower', QDIMM, DWORK, QDIMM, Q)
CALL MA02ED('Lower', QDIMM, DWORK, QDIMM)
CALL MA02DD('Pack', 'Upper', QDIMM, DWORK, QDIMM, Q)
END IF
C
C ...set VEC...
VEC(1) = .TRUE.
VEC(2) = .TRUE.
VEC(3) = .TRUE.
VEC(4) = .TRUE.
VEC(5) = .NOT. BPAR(1)
VEC(6) = .NOT. BPAR(4)
VEC(7) = .TRUE.
VEC(8) = .TRUE.
IF (NR(1) .EQ. 1) THEN
IF ((NR(2) .EQ. 1) .OR. (NR(2) .EQ. 2)) VEC(9) = .TRUE.
ELSE IF (NR(1) .EQ. 2) THEN
IF ((NR(2) .EQ. 1) .OR. ((NR(2) .GE. 3) .AND. (NR(2) .LE. 6)))
1 VEC(9) = .TRUE.
ELSE IF (NR(1) .EQ. 3) THEN
IF (NR(2) .EQ. 2) VEC(9) = .TRUE.
END IF
CHPAR = NOTES(NR(1),NR(2))
N = IPAR(1)
M = IPAR(2)
P = IPAR(3)
2001 CONTINUE
RETURN
C *** Last line of BB01AD ***
END
|