File: BB04AD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (476 lines) | stat: -rw-r--r-- 17,052 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
      SUBROUTINE BB04AD(DEF, NR, DPAR, IPAR, VEC, N, M, E, LDE, A, LDA,
     1                  Y, LDY, B, LDB, X, LDX, U, LDU, NOTE, DWORK,
     2                  LDWORK, INFO)
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To generate benchmark examples of (generalized) discrete-time
C     Lyapunov equations
C
C        T           T
C       A  X  A  -  E  X E  =  Y .
C
C     In some examples, the right hand side has the form
C
C                T
C       Y  =  - B  B
C
C     and the solution can be represented as a product of Cholesky
C     factors
C
C              T
C       X  =  U  U .
C
C     E, A, Y, X, and U are real N-by-N matrices, and B is M-by-N. Note
C     that E can be the identity matrix. For some examples, B, X, or U
C     are not provided.
C
C     This routine is an implementation of the benchmark library
C     DTLEX (Version 1.0) described in [1].
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DEF     CHARACTER*1
C             Specifies the kind of values used as parameters when
C             generating parameter-dependent and scalable examples
C             (i.e., examples with NR(1) = 2, 3, or 4):
C             DEF = 'D' or 'd': Default values are used.
C             DEF = 'N' or 'n': Values set in DPAR and IPAR are used.
C             This parameter is not referenced if NR(1) = 1.
C             Note that the scaling parameter of examples with
C             NR(1) = 3 or 4 is considered as a regular parameter in
C             this context.
C
C     Input/Output Parameters
C
C     NR      (input) INTEGER array, dimension 2
C             Specifies the index of the desired example according
C             to [1].
C             NR(1) defines the group:
C                   1 : parameter-free problems of fixed size
C                   2 : parameter-dependent problems of fixed size
C                   3 : parameter-free problems of scalable size
C                   4 : parameter-dependent problems of scalable size
C             NR(2) defines the number of the benchmark example
C             within a certain group according to [1].
C
C     DPAR    (input/output) DOUBLE PRECISION array, dimension 2
C             On entry, if DEF = 'N' or 'n' and the desired example
C             depends on real parameters, then the array DPAR must
C             contain the values for these parameters.
C             For an explanation of the parameters see [1].
C             For Example 4.1, DPAR(1) and DPAR(2) define 'r' and 's',
C             respectively.
C             For Example 4.2, DPAR(1) and DPAR(2) define 'lambda' and
C             's', respectively.
C             For Examples 4.3 and 4.4, DPAR(1) defines the parameter
C             't'.
C             On exit, if DEF = 'D' or 'd' and the desired example
C             depends on real parameters, then the array DPAR is
C             overwritten by the default values given in [1].
C
C     IPAR    (input/output) INTEGER array of DIMENSION at least 1
C             On entry, if DEF = 'N' or 'n' and the desired example
C             depends on integer parameters, then the array IPAR must
C             contain the values for these parameters.
C             For an explanation of the parameters see [1].
C             For Examples 4.1, 4.2, and 4.3, IPAR(1) defines 'n'.
C             For Example 4.4, IPAR(1) defines 'q'.
C             On exit, if DEF = 'D' or 'd' and the desired example
C             depends on integer parameters, then the array IPAR is
C             overwritten by the default values given in [1].
C
C     VEC     (output) LOGICAL array, dimension 8
C             Flag vector which displays the availability of the output
C             data:
C             VEC(1) and VEC(2) refer to N and M, respectively, and are
C             always .TRUE.
C             VEC(3) is .TRUE. iff E is NOT the identity matrix.
C             VEC(4) and VEC(5) refer to A and Y, respectively, and are
C             always .TRUE.
C             VEC(6) is .TRUE. iff B is provided.
C             VEC(7) is .TRUE. iff the solution matrix X is provided.
C             VEC(8) is .TRUE. iff the Cholesky factor U is provided.
C
C     N       (output) INTEGER
C             The actual state dimension, i.e., the order of the
C             matrices E and A.
C
C     M       (output) INTEGER
C             The number of rows in the matrix B. If B is not provided
C             for the desired example, M = 0 is returned.
C
C     E       (output) DOUBLE PRECISION array, dimension (LDE,N)
C             The leading N-by-N part of this array contains the
C             matrix E.
C             NOTE that this array is overwritten (by the identity
C             matrix), if VEC(3) = .FALSE.
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= N.
C
C     A       (output) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array contains the
C             matrix A.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= N.
C
C     Y       (output) DOUBLE PRECISION array, dimension (LDY,N)
C             The leading N-by-N part of this array contains the
C             matrix Y.
C
C     LDY     INTEGER
C             The leading dimension of array Y.  LDY >= N.
C
C     B       (output) DOUBLE PRECISION array, dimension (LDB,N)
C             The leading M-by-N part of this array contains the
C             matrix B.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= M.
C
C     X       (output) DOUBLE PRECISION array, dimension (LDX,N)
C             The leading N-by-N part of this array contains the
C             matrix X.
C
C     LDX     INTEGER
C             The leading dimension of array X.  LDX >= N.
C
C     U       (output) DOUBLE PRECISION array, dimension (LDU,N)
C             The leading N-by-N part of this array contains the
C             matrix U.
C
C     LDU     INTEGER
C             The leading dimension of array U.  LDU >= N.
C
C     NOTE    (output) CHARACTER*70
C             String containing short information about the chosen
C             example.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             For Examples 4.1 and 4.2., LDWORK >= 2*IPAR(1) is
C             required.
C             For the other examples, no workspace is needed, i.e.,
C             LDWORK >= 1.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value; in particular, INFO = -3 or -4 indicates
C                   that at least one of the parameters in DPAR or
C                   IPAR, respectively, has an illegal value.
C
C     REFERENCES
C
C     [1]  D. Kressner, V. Mehrmann, and T. Penzl.
C          DTLEX - a Collection of Benchmark Examples for Discrete-
C          Time Lyapunov Equations.
C          SLICOT Working Note 1999-7, 1999.
C
C     NUMERICAL ASPECTS
C
C     None
C
C     CONTRIBUTOR
C
C     D. Kressner, V. Mehrmann, and T. Penzl (TU Chemnitz)
C
C     For questions concerning the collection or for the submission of
C     test examples, please contact Volker Mehrmann
C     (Email: volker.mehrmann@mathematik.tu-chemnitz.de).
C
C     REVISIONS
C
C     June 1999, V. Sima.
C
C     KEYWORDS
C
C     discrete-time Lyapunov equations
C
C     ********************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO, THREE, FOUR
      PARAMETER         (ZERO = .0D0, ONE = .1D1, TWO = .2D1,
     1                   THREE = .3D1, FOUR = .4D1)
C     .. Scalar Arguments ..
      CHARACTER         DEF
      CHARACTER*70      NOTE
      INTEGER           INFO, LDA, LDB, LDE, LDU, LDWORK, LDX, LDY, M, N
C     .. Array Arguments ..
      LOGICAL           VEC(8)
      INTEGER           IPAR(*), NR(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), DPAR(*), DWORK(LDWORK),
     1                  E(LDE,*), U(LDU,*), X(LDX,*), Y(LDY,*)
C     .. Local Scalars ..
      INTEGER           I, J, K
      DOUBLE PRECISION  TEMP, TTEMP, TWOBYN
C     .. Local Arrays ..
      LOGICAL           VECDEF(8)
C     .. External Functions ..
C     . BLAS .
      DOUBLE PRECISION  DDOT
      EXTERNAL          DDOT
C     . LAPACK .
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
C     . BLAS .
      EXTERNAL          DGEMV, DGER, DAXPY
C     . LAPACK .
      EXTERNAL          DLASET
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MIN, MOD, SQRT
C     .. Data Statements ..
C     . default values for availabilities .
      DATA VECDEF /.TRUE., .TRUE., .FALSE., .TRUE.,
     1             .TRUE., .FALSE., .FALSE., .FALSE./
C
C     .. Executable Statements ..
C
      INFO = 0
      DO 10  I = 1, 8
        VEC(I) = VECDEF(I)
  10  CONTINUE
C
      IF (NR(1) .EQ. 4) THEN
        IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
          INFO = -1
          RETURN
        END IF
C
        IF (NR(2) .EQ. 1) THEN
          NOTE = 'DTLEX: Example 4.1'
          IF (LSAME(DEF,'D')) THEN
            IPAR(1) = 10
            DPAR(1) = .15D1
            DPAR(2) = .15D1
          END IF
          IF ((DPAR(1) .LE. ONE) .OR. (DPAR(2) .LE. ONE)) INFO = -3
          IF (IPAR(1) .LT. 2) INFO = -4
          N = IPAR(1)
          M = 1
          IF (LDE .LT. N) INFO = -9
          IF (LDA .LT. N) INFO = -11
          IF (LDY .LT. N) INFO = -13
          IF (LDB .LT. M) INFO = -15
          IF (LDX .LT. N) INFO = -17
          IF (LDWORK .LT. N*2) INFO = -22
          IF (INFO .NE. 0) RETURN
C
          VEC(6) = .TRUE.
          VEC(7) = .TRUE.
          TWOBYN = TWO / DBLE( N )
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          CALL DLASET('A', N, N, ZERO, ZERO, Y, LDY)
          CALL DLASET('A', M, N, -TWOBYN, ONE - TWOBYN, B, LDB)
          CALL DLASET('A', N, N, ZERO, ZERO, X, LDX)
          DO 20  I = 1, N
            TEMP = DPAR(1) ** (I-1)
            A(I,I) =  (TEMP-ONE) / (TEMP+ONE)
            DWORK(I) = ONE
  20      CONTINUE
C         H1 * A
          CALL DGEMV('T', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
          CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, A, LDA)
C         A * H1
          CALL DGEMV('N', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
          CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, A, LDA)
C         S A INV(S), B INV(S)
          DO 40  J = 1, N
            B(1,J) = B(1,J) / (DPAR(2)**(J-1))
            DO 30  I = 1, N
              A(I,J) = A(I,J) * (DPAR(2)**(I-J))
  30        CONTINUE
            DWORK(J) = ONE - TWO * MOD(J,2)
  40      CONTINUE
C         H2 * A
          CALL DGEMV('T', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
          CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, A, LDA)
C         A * H2
          CALL DGEMV('N', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
          CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, A, LDA)
C         B * H2
          CALL DAXPY(N, -TWOBYN * DDOT(N, B, LDB, DWORK, 1), DWORK, 1,
     1               B, LDB)
C         Y = -B' * B
          CALL DGER(N ,N, -ONE, B, LDB, B, LDB, Y, LDY)
C         X = -Y
          DO 50  J = 1, N
            CALL DAXPY(N, -ONE, Y(1,J), 1, X(1,J), 1)
  50      CONTINUE
C
        ELSE IF (NR(2) .EQ. 2) THEN
          NOTE = 'DTLEX: Example 4.2'
          IF (LSAME(DEF,'D')) THEN
            IPAR(1) = 10
            DPAR(1) = -.5D0
            DPAR(2) = .15D1
          END IF
          IF ((DPAR(1) .LE. -ONE) .OR. (DPAR(1) .GE. ONE) .OR.
     1        (DPAR(2) .LE. ONE)) INFO = -3
          IF (IPAR(1) .LT. 2) INFO = -4
          N = IPAR(1)
          M = 1
          IF (LDE .LT. N) INFO = -9
          IF (LDA .LT. N) INFO = -11
          IF (LDY .LT. N) INFO = -13
          IF (LDB .LT. M) INFO = -15
          IF (LDWORK .LT. N*2) INFO = -22
          IF (INFO .NE. 0) RETURN
C
          VEC(6) = .TRUE.
          TWOBYN = TWO / DBLE( N )
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, DPAR(1), A, LDA)
          CALL DLASET('A', N, N, ZERO, ZERO, Y, LDY)
          CALL DLASET('A', M, N, -TWOBYN, ONE - TWOBYN, B, LDB)
          DO 60  I = 1, N-1
            DWORK(I) = ONE
            A(I,I+1) = ONE
  60      CONTINUE
          DWORK(N) = ONE
C         H1 * A
          CALL DGEMV('T', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
          CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, A, LDA)
C         A * H1
          CALL DGEMV('N', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
          CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, A, LDA)
C         S A INV(S), B INV(S)
          DO 80  J = 1, N
            B(1,J) = B(1,J) / (DPAR(2)**(J-1))
            DO 70  I = 1, N
              A(I,J) = A(I,J) * (DPAR(2)**(I-J))
  70        CONTINUE
            DWORK(J) = ONE - TWO * MOD(J,2)
  80      CONTINUE
C         H2 * A
          CALL DGEMV('T', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
          CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, A, LDA)
C         A * H2
          CALL DGEMV('N', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
          CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, A, LDA)
C         B * H2
          CALL DAXPY(N, -TWOBYN * DDOT(N, B, LDB, DWORK, 1), DWORK, 1,
     1               B, LDB)
C         Y = -B' * B
          CALL DGER(N ,N, -ONE, B, LDB, B, LDB, Y, LDY)
C
        ELSE IF (NR(2) .EQ. 3) THEN
          NOTE = 'DTLEX: Example 4.3'
          IF (LSAME(DEF,'D')) THEN
            IPAR(1) = 10
            DPAR(1) = .1D2
          END IF
          IF (DPAR(1) .LT. ZERO) INFO = -3
          IF (IPAR(1) .LT. 2) INFO = -4
          N = IPAR(1)
          M = 0
          IF (LDE .LT. N) INFO = -9
          IF (LDA .LT. N) INFO = -11
          IF (LDY .LT. N) INFO = -13
          IF (LDX .LT. N) INFO = -17
          IF (INFO .NE. 0) RETURN
C
          VEC(3) = .TRUE.
          VEC(7) = .TRUE.
          TEMP = TWO ** (-DPAR(1))
          CALL DLASET('U', N, N, ZERO, ZERO, E, LDE)
          CALL DLASET('L', N, N, TEMP, ONE, E, LDE)
          CALL DLASET('L', N, N, ZERO, ZERO, A, LDA)
          CALL DLASET('U', N, N, ONE, ZERO, A, LDA)
          CALL DLASET('A', N, N, ONE, ONE, X, LDX)
          DO 90  I = 1, N
            A(I,I) = DBLE( I ) + TEMP
  90      CONTINUE
          DO 110  J = 1, N
            DO 100  I = 1, N
              Y(I,J) = TEMP * TEMP * DBLE( 1 - (N-I) * (N-J) ) +
     1                 TEMP * DBLE( 3 * (I+J) - 2 * (N+1) ) +
     2                 FOUR*DBLE( I*J ) - TWO * DBLE( I+J )
 100        CONTINUE
 110      CONTINUE
C
        ELSE IF (NR(2) .EQ. 4) THEN
          NOTE = 'DTLEX: Example 4.4'
          IF (LSAME(DEF,'D')) THEN
            IPAR(1) = 10
            DPAR(1) = .15D1
          END IF
          IF (DPAR(1) .LT. ONE) INFO = -3
          IF (IPAR(1) .LT. 1) INFO = -4
          N = IPAR(1) * 3
          M = 1
          IF (LDE .LT. N) INFO = -9
          IF (LDA .LT. N) INFO = -11
          IF (LDY .LT. N) INFO = -13
          IF (LDB .LT. M) INFO = -15
          IF (INFO .NE. 0) RETURN
C
          VEC(3) = .TRUE.
          VEC(6) = .TRUE.
          CALL DLASET('A', N, N, ZERO, ZERO, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          DO 140  I = 1, IPAR(1)
            TTEMP = ONE - ONE / (DPAR(1)**I)
            TEMP = - TTEMP / SQRT( TWO )
            DO 130  J = 1, I - 1
              DO 120  K = 0, 2
                A(N - I*3+3, J*3-K) = TTEMP
                A(N - I*3+2, J*3-K) = TWO * TEMP
 120          CONTINUE
 130        CONTINUE
            A(N - I*3+3, I*3-2) = TTEMP
            A(N - I*3+2, I*3-2) = TWO * TEMP
            A(N - I*3+2, I*3-1) = TWO * TEMP
            A(N - I*3+2, I*3  ) = TEMP
            A(N - I*3+1, I*3  ) = TEMP
 140      CONTINUE
          DO 160  J = 1, N
            IF (J .GT. 1) CALL DAXPY(N, ONE, A(J-1,1), LDA, A(J,1), LDA)
            B(1, J) = DBLE( J )
            DO 150  I = 1, N
              E(I,N-J+1) = DBLE( MIN(I,J) )
              Y(I,J) = -DBLE( I*J )
 150        CONTINUE
 160      CONTINUE
C
        ELSE
          INFO = -2
        END IF
      ELSE
        INFO = -2
      END IF
C
      RETURN
C *** Last Line of BB04AD ***
      END