File: BD01AD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (1017 lines) | stat: -rw-r--r-- 35,115 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
      SUBROUTINE BD01AD( DEF, NR, DPAR, IPAR, VEC, N, M, P, E, LDE, A,
     1                   LDA, B, LDB, C, LDC, D, LDD, NOTE, DWORK,
     2                   LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To generate benchmark examples for time-invariant,
C     continuous-time dynamical systems
C
C         .
C       E x(t) = A x(t) + B u(t)
C
C         y(t) = C x(t) + D u(t)
C
C     E, A are real N-by-N matrices, B is N-by-M, C is P-by-N, and
C     D is P-by-M. In many examples, E is the identity matrix and D is
C     the zero matrix.
C
C     This routine is an implementation of the benchmark library
C     CTDSX (Version 1.0) described in [1].
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DEF     CHARACTER*1
C             Specifies the kind of values used as parameters when
C             generating parameter-dependent and scalable examples
C             (i.e., examples with NR(1) = 2, 3, or 4):
C             = 'D':  Default values defined in [1] are used;
C             = 'N':  Values set in DPAR and IPAR are used.
C             This parameter is not referenced if NR(1) = 1.
C             Note that the scaling parameter of examples with
C             NR(1) = 3 or 4 is considered as a regular parameter in
C             this context.
C
C     Input/Output Parameters
C
C     NR      (input) INTEGER array, dimension (2)
C             Specifies the index of the desired example according
C             to [1].
C             NR(1) defines the group:
C                   1 : parameter-free problems of fixed size
C                   2 : parameter-dependent problems of fixed size
C                   3 : parameter-free problems of scalable size
C                   4 : parameter-dependent problems of scalable size
C             NR(2) defines the number of the benchmark example
C             within a certain group according to [1].
C
C     DPAR    (input/output) DOUBLE PRECISION array, dimension (7)
C             On entry, if DEF = 'N' and the desired example depends on
C             real parameters, then the array DPAR must contain the
C             values for these parameters.
C             For an explanation of the parameters see [1].
C             For Examples 2.1 and 2.2, DPAR(1) defines the parameter
C             'epsilon'.
C             For Example 2.4, DPAR(1), ..., DPAR(7) define 'b', 'mu',
C             'r', 'r_c', 'k_l', 'sigma', 'a', respectively.
C             For Example 2.7, DPAR(1) and DPAR(2) define 'mu' and 'nu',
C             respectively.
C             For Example 4.1, DPAR(1), ..., DPAR(7) define 'a', 'b',
C             'c', 'beta_1', 'beta_2', 'gamma_1', 'gamma_2',
C             respectively.
C             For Example 4.2, DPAR(1), ..., DPAR(3) define 'mu',
C             'delta', 'kappa', respectively.
C             On exit, if DEF = 'D' and the desired example depends on
C             real parameters, then the array DPAR is overwritten by the
C             default values given in [1].
C
C     IPAR    (input/output) INTEGER array, dimension (1)
C             On entry, if DEF = 'N' and the desired example depends on
C             integer parameters, then the array IPAR must contain the
C             values for these parameters.
C             For an explanation of the parameters see [1].
C             For Examples 2.3, 2.5, and 2.6, IPAR(1) defines the
C             parameter 's'.
C             For Example 3.1, IPAR(1) defines 'q'.
C             For Examples 3.2 and 3.3, IPAR(1) defines 'n'.
C             For Example 3.4, IPAR(1) defines 'l'.
C             For Example 4.1, IPAR(1) defines 'n'.
C             For Example 4.2, IPAR(1) defines 'l'.
C             On exit, if DEF = 'D' and the desired example depends on
C             integer parameters, then the array IPAR is overwritten by
C             the default values given in [1].
C
C     VEC     (output) LOGICAL array, dimension (8)
C             Flag vector which displays the availabilty of the output
C             data:
C             VEC(1), ..., VEC(3) refer to N, M, and P, respectively,
C             and are always .TRUE..
C             VEC(4) is .TRUE. iff E is NOT the identity matrix.
C             VEC(5), ..., VEC(7) refer to A, B, and C, respectively,
C             and are always .TRUE..
C             VEC(8) is .TRUE. iff D is NOT the zero matrix.
C
C     N       (output) INTEGER
C             The actual state dimension, i.e., the order of the
C             matrices E and A.
C
C     M       (output) INTEGER
C             The number of columns in the matrices B and D.
C
C     P       (output) INTEGER
C             The number of rows in the matrices C and D.
C
C     E       (output) DOUBLE PRECISION array, dimension (LDE,N)
C             The leading N-by-N part of this array contains the
C             matrix E.
C             NOTE that this array is overwritten (by the identity
C             matrix), if VEC(4) = .FALSE..
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= N.
C
C     A       (output) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array contains the
C             matrix A.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= N.
C
C     B       (output) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array contains the
C             matrix B.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= N.
C
C     C       (output) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading P-by-N part of this array contains the
C             matrix C.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= P.
C
C     D       (output) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading P-by-M part of this array contains the
C             matrix D.
C             NOTE that this array is overwritten (by the zero
C             matrix), if VEC(8) = .FALSE..
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= P.
C
C     NOTE    (output) CHARACTER*70
C             String containing short information about the chosen
C             example.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             For Example 3.4, LDWORK >= 4*IPAR(1) is required.
C             For the other examples, no workspace is needed, i.e.,
C             LDWORK >= 1.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value; in particular, INFO = -3 or -4 indicates
C                   that at least one of the parameters in DPAR or
C                   IPAR, respectively, has an illegal value;
C             = 1:  data file can not be opened or has wrong format.
C
C
C     REFERENCES
C
C     [1]  Kressner, D., Mehrmann, V. and Penzl, T.
C          CTDSX - a Collection of Benchmark Examples for State-Space
C          Realizations of Continuous-Time Dynamical Systems.
C          SLICOT Working Note 1998-9. 1998.
C
C     NUMERICAL ASPECTS
C
C     None
C
C     CONTRIBUTOR
C
C     D. Kressner, V. Mehrmann, and T. Penzl (TU Chemnitz)
C
C     For questions concerning the collection or for the submission of
C     test examples, please contact Volker Mehrmann
C     (Email: volker.mehrmann@mathematik.tu-chemnitz.de).
C
C     REVISIONS
C
C     June 1999, V. Sima.
C
C     KEYWORDS
C
C     continuous-time dynamical systems
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO, THREE, FOUR, PI
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     1                    THREE = 3.0D0, FOUR = 4.0D0,
     2                    PI = .3141592653589793D1 )
C     .. Scalar Arguments ..
      CHARACTER         DEF
      CHARACTER*70      NOTE
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDE, LDWORK, M, N, P
C     .. Array Arguments ..
      LOGICAL           VEC(8)
      INTEGER           IPAR(*), NR(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DPAR(*),
     1                  DWORK(*), E(LDE,*)
C     .. Local Scalars ..
      CHARACTER*12      DATAF
      INTEGER           I, J, L, STATUS
      DOUBLE PRECISION  APPIND, B1, B2, C1, C2, TEMP, TTEMP
C     .. Local Arrays ..
      LOGICAL           VECDEF(8)
C     .. External Functions ..
C     . LAPACK .
      LOGICAL          LSAME
      EXTERNAL         LSAME
C     .. External Subroutines ..
C     . BLAS .
      EXTERNAL         DSCAL
C     . LAPACK .
      EXTERNAL         DLASET
C     .. Intrinsic Functions ..
      INTRINSIC        MAX, MIN, MOD
C     .. Data Statements ..
C     . default values for availabities .
      DATA VECDEF /.TRUE., .TRUE., .TRUE., .FALSE.,
     1             .TRUE., .TRUE., .TRUE., .FALSE./
C
C     .. Executable Statements ..
C
      INFO = 0
      DO 10  I = 1, 8
        VEC(I) = VECDEF(I)
10    CONTINUE
C
      IF (NR(1) .EQ. 1) THEN
C
        IF (NR(2) .EQ. 1) THEN
          NOTE = 'Laub 1979, Ex.1'
          N = 2
          M = 1
          P = 2
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          A(1,2) = ONE
          B(1,1) = ZERO
          B(2,1) = ONE
          CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 2) THEN
          NOTE = 'Laub 1979, Ex.2: uncontrollable-unobservable data'
          N = 2
          M = 1
          P = 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          A(1,1) = FOUR
          A(2,1) = -.45D1
          A(1,2) = .3D1
          A(2,2) = -.35D1
          B(1,1) = ONE
          B(2,1) = -ONE
          C(1,1) = THREE
          C(1,2) = TWO
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 3) THEN
          NOTE = 'Beale/Shafai 1989: model of L-1011 aircraft'
          N = 4
          M = 2
          P = 4
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 4) THEN
          NOTE = 'Bhattacharyya et al. 1983: binary distillation column'
          N = 8
          M = 2
          P = 8
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 5) THEN
          NOTE = 'Patnaik et al. 1980: tubular ammonia reactor'
          N = 9
          M = 3
          P = 9
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 6) THEN
          NOTE = 'Davison/Gesing 1978: J-100 jet engine'
          N = 30
          M = 3
          P = 5
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 7) THEN
          NOTE = 'Davison 1967: binary distillation column'
          N = 11
          M = 3
          P = 3
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
          C(2,1) = ONE
          C(1,10) = ONE
          C(3,11) = ONE
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)

        ELSE IF (NR(2) .EQ. 8) THEN
          NOTE = 'Chien/Ergin/Ling/Lee 1958: drum boiler'
          N = 9
          M = 3
          P = 2
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
          C(1,6) = ONE
          C(2,9) = ONE
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 9) THEN
          NOTE = 'Ly, Gangsaas 1981: B-767 airplane'
          N = 55
          M = 2
          P = 2
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 10) THEN
          NOTE = 'control surface servo for an underwater vehicle'
          N = 8
          M = 2
          P = 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
          C(1,7) = ONE
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
        ELSE
          INFO = -2
        END IF
C
        IF ((NR(2) .GE. 3) .AND. (NR(2) .LE. 10)) THEN
C         .. loading data files
          WRITE (DATAF(1:11), '(A,I2.2,A)') 'BD011', NR(2), '.dat'
          OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = DATAF(1:11))
          IF (STATUS .NE. 0) THEN
            INFO = 1
          ELSE
            DO 110  I = 1, N
              READ (1, FMT = *, IOSTAT = STATUS) (A(I,J), J = 1, N)
              IF (STATUS .NE. 0)  INFO = 1
110         CONTINUE
            DO 120  I = 1, N
              READ (1, FMT = *, IOSTAT = STATUS) (B(I,J), J = 1, M)
              IF (STATUS .NE. 0)  INFO = 1
120         CONTINUE
            IF ((NR(2) .EQ. 6) .OR. (NR(2) .EQ. 9)) THEN
              DO 130  I = 1, P
                READ (1, FMT = *, IOSTAT = STATUS) (C(I,J), J = 1, N)
                IF (STATUS .NE. 0)  INFO = 1
130           CONTINUE
            END IF
          END IF
          CLOSE(1)
        END IF
C
      ELSE IF (NR(1) .EQ. 2) THEN
        IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
          INFO = -1
          RETURN
        END IF
C
        IF (NR(2) .EQ. 1) THEN
          NOTE = 'Chow/Kokotovic 1976: magnetic tape control system'
          IF (LSAME(DEF,'D')) DPAR(1) = 1D-6
          IF (DPAR(1) .EQ. ZERO) INFO = -3
          N = 4
          M = 1
          P = 2
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          A(1,2) =  .400D0
          A(2,3) =  .345D0
          A(3,2) = -.524D0/DPAR(1)
          A(3,3) = -.465D0/DPAR(1)
          A(3,4) =  .262D0/DPAR(1)
          A(4,4) = -ONE/DPAR(1)
          CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
          B(4,1) = ONE/DPAR(1)
          CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
          C(1,1) = ONE
          C(2,3) = ONE
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 2) THEN
          NOTE = 'Arnold/Laub 1984'
          IF (LSAME(DEF,'D')) DPAR(1) = 1D-6
          N = 4
          M = 1
          P = 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, DPAR(1), A, LDA)
          A(1,1) = -DPAR(1)
          A(2,1) = -ONE
          A(1,2) =  ONE
          A(2,2) = -DPAR(1)
          A(4,3) = -ONE
          A(3,4) =  ONE
          CALL DLASET('A', N, M, ONE, ONE, B, LDB)
          CALL DLASET('A', P, N, ONE, ONE, C, LDC)
          D(1,1) = ZERO
C
        ELSE IF (NR(2) .EQ. 3) THEN
          NOTE = 'Vertical acceleration of a rigid guided missile'
          IF (LSAME(DEF,'D')) IPAR(1) = 1
          IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 10)) INFO = -4
          N = 3
          M = 1
          P = 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          A(2,1) = ONE
          A(3,3) = -.19D3
          CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
          B(3,1) = .19D3
          D(1,1) = ZERO
          OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD01203.dat')
          IF (STATUS .NE. 0) THEN
            INFO = 1
          ELSE
            DO 210  I = 1, IPAR(1)
              READ (1, FMT = *, IOSTAT = STATUS) (A(1,J), J = 1, N)
              IF (STATUS .NE. 0)  INFO = 1
              READ (1, FMT = *, IOSTAT = STATUS) (A(2,J), J = 2, N)
              IF (STATUS .NE. 0)  INFO = 1
              READ (1, FMT = *, IOSTAT = STATUS) (C(1,J), J = 1, N)
              IF (STATUS .NE. 0)  INFO = 1
210         CONTINUE
          END IF
          CLOSE(1)
C
        ELSE IF (NR(2) .EQ. 4) THEN
          NOTE = 'Senning 1980: hydraulic positioning system'
          IF (LSAME(DEF,'D')) THEN
            DPAR(1) = .14D5
            DPAR(2) = .1287D0
            DPAR(3) = .15D0
            DPAR(4) = .1D-1
            DPAR(5) = .2D-2
            DPAR(6) = .24D0
            DPAR(7) = .1075D2
          END IF
          IF (((DPAR(1) .LE. .9D4)    .OR. (DPAR(1) .GE. .16D5))   .OR.
     1        ((DPAR(2) .LE. .5D-1)   .OR. (DPAR(2) .GE. .3D0))    .OR.
     2        ((DPAR(3) .LE. .5D-1)   .OR. (DPAR(3) .GE. .5D1))    .OR.
     3        ((DPAR(4) .LE. ZERO)    .OR. (DPAR(4) .GE. .5D-1))   .OR.
     4        ((DPAR(5) .LE. .103D-3) .OR. (DPAR(5) .GE. .35D-2))  .OR.
     5        ((DPAR(6) .LE. .1D-2)   .OR. (DPAR(6) .GE. .15D2))   .OR.
     6        ((DPAR(7) .LE. .105D2)  .OR. (DPAR(7) .GE. .111D2))) THEN
            INFO = -3
          END IF
          N = 3
          M = 1
          P = 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          A(1,2) = ONE
          A(2,2) = -(DPAR(3) + FOUR*DPAR(4)/PI) / DPAR(2)
          A(2,3) = DPAR(7) / DPAR(2)
          A(3,2) = -FOUR * DPAR(7) * DPAR(1) / .874D3
          A(3,3) = -FOUR * DPAR(1) * (DPAR(6) + DPAR(5)) / .874D3
          CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
          B(3,1) = -FOUR * DPAR(1) / .874D3
          CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
          D(1,1) = 0
C
        ELSE IF (NR(2) .EQ. 5) THEN
          NOTE = 'Kwakernaak/Westdyk 1985: cascade of inverted pendula'
          IF (LSAME(DEF,'D')) IPAR(1) = 1
          IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 7)) INFO = -4
          IF (IPAR(1) .LE. 6) THEN
            M = IPAR(1)
          ELSE
            M = 10
          END IF
          N = 2 * M
          P = M
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          WRITE (DATAF(1:12), '(A,I1,A)') 'BD01205', IPAR(1), '.dat'
          OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = DATAF(1:12))
          IF (STATUS .NE. 0) THEN
            INFO = 1
          ELSE
            DO 220  I = 1, N
              READ (1, FMT = *, IOSTAT = STATUS) (A(I,J), J = 1, N)
              IF (STATUS .NE. 0)  INFO = 1
220         CONTINUE
            DO 230  I = 1, N
              READ (1, FMT = *, IOSTAT = STATUS) (B(I,J), J = 1, M)
              IF (STATUS .NE. 0)  INFO = 1
230         CONTINUE
            DO 240  I = 1, P
              READ (1, FMT = *, IOSTAT = STATUS) (C(I,J), J = 1, N)
              IF (STATUS .NE. 0)  INFO = 1
240         CONTINUE
          END IF
          CLOSE(1)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 6) THEN
          NOTE = 'Kallstrom/Astrom 1981: regulation of a ship heading'
          IF (LSAME(DEF,'D')) IPAR(1) = 1
          IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 5)) INFO = -4
          N = 3
          M = 1
          P = 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          A(3,2) = ONE
          B(3,1) = ZERO
          CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
          C(1,3) = ONE
          D(1,1) = ZERO
          OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD01206.dat')
          IF (STATUS .NE. 0) THEN
            INFO = 1
          ELSE
            DO 250  I = 1, IPAR(1)
              READ (1, FMT = *, IOSTAT = STATUS) (A(1,J), J = 1, 2)
              IF (STATUS .NE. 0)  INFO = 1
              READ (1, FMT = *, IOSTAT = STATUS) (A(2,J), J = 1, 2)
              IF (STATUS .NE. 0)  INFO = 1
              READ (1, FMT = *, IOSTAT = STATUS) (B(J,1), J = 1, 2)
              IF (STATUS .NE. 0)  INFO = 1
250         CONTINUE
          END IF
          CLOSE(1)
C
        ELSE IF (NR(2) .EQ. 7) THEN
          NOTE = 'Ackermann 1989: track-guided bus'
          IF (LSAME(DEF,'D')) THEN
            DPAR(1) = .15D2
            DPAR(2) = .1D2
          END IF
          IF ((DPAR(1) .LT. .995D1) .OR. (DPAR(1) .GT. .16D2)) INFO = -3
          IF ((DPAR(1) .LT. .1D1) .OR. (DPAR(1) .GT. .2D2)) INFO = -3
          N = 5
          M = 1
          P = 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          A(1,1) = -.668D3 / (DPAR(1)*DPAR(2))
          A(1,2) = -ONE + .1804D3 / (DPAR(1)*DPAR(2)**2)
          A(2,1) = .1804D3 / (.1086D2*DPAR(1))
          A(2,2) = -.44175452D4 / (.1086D2*DPAR(1)*DPAR(2))
          A(1,5) = 198 / (DPAR(1)*DPAR(2))
          A(2,5) = .72666D3 / (.1086D2*DPAR(1))
          A(3,1) = DPAR(2)
          A(3,4) = DPAR(2)
          A(4,2) = ONE
          CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
          B(5,1) = ONE
          CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
          C(1,3) = ONE
          C(1,4) = .612D1
          D(1,1) = 0
C
        ELSE
          INFO = -2
        END IF
C
      ELSE IF (NR(1) .EQ. 3) THEN
        IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
          INFO = -1
          RETURN
        END IF
C
        IF (NR(2) .EQ. 1) THEN
          NOTE = 'Laub 1979, Ex.4: string of high speed vehicles'
          IF (LSAME(DEF,'D')) IPAR(1) = 20
          IF (IPAR(1) .LT. 2) INFO = -4
          N = 2*IPAR(1) - 1
          M = IPAR(1)
          P = IPAR(1) - 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
          CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
          DO 310  I = 1, N
            IF (MOD(I,2) .EQ. 1) THEN
              A(I,I)       = -ONE
              B(I,(I+1)/2) =  ONE
            ELSE
              A(I,I-1) =  ONE
              A(I,I+1) = -ONE
              C(I/2,I) =  ONE
            END IF
310       CONTINUE
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 2) THEN
          NOTE = 'Hodel et al. 1996: heat flow in a thin rod'
          IF (LSAME(DEF,'D')) IPAR(1) = 100
          IF (IPAR(1) .LT. 1) INFO = -4
          N = IPAR(1)
          M = 1
          P = N
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          TEMP = DBLE(N + 1)
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, -TWO * TEMP, A, LDA)
          A(1,1) = -TEMP
          DO 320  I = 1, N - 1
            A(I,I+1) = TEMP
            A(I+1,I) = TEMP
320       CONTINUE
          CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
          B(N,1) = TEMP
          CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 3) THEN
          NOTE = 'Laub 1979, Ex.6'
          IF (LSAME(DEF,'D')) IPAR(1) = 21
          IF (IPAR(1) .LT. 1) INFO = -4
          N = IPAR(1)
          M = 1
          P = 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          CALL DLASET('A', N-1, N-1, ZERO, ONE, A(1,2), LDA)
          CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
          B(N,1) = ONE
          CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
          C(1,1) = ONE
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 4) THEN
          NOTE = 'Lang/Penzl 1994: rotating axle'
          IF (LSAME(DEF,'D')) IPAR(1) = 211
          IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 211)) INFO = -4
          N = 2*IPAR(1) - 1
          M = IPAR(1)
          P = IPAR(1)
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (LDWORK .LT. M*4) INFO = -21
          IF (INFO .NE. 0) RETURN
C
          OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD01304.dat')
          IF (STATUS .NE. 0) THEN
            INFO = 1
          ELSE
            DO 330  I = 1, M*4
              READ (1, FMT = *, IOSTAT = STATUS) DWORK(I)
              IF (STATUS .NE. 0)  INFO = 1
330         CONTINUE
          END IF
          CLOSE(1)
          IF (INFO .NE. 0) RETURN
          CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
          E(1,1) = DWORK(1)
          DO 340  I = 2, M
            E(I,I-1) = DWORK((I-2) * 4 + 1)
            E(I,I) = -DWORK((I-1) * 4 + 1)
340       CONTINUE
          E(M,M) = -E(M,M)
          DO 350  I = M-1, 1, -1
            DO 345  J = I, M
             IF (I .EQ. 1) THEN
               E(J,I) = E(J,I) - E(J,I+1)
             ELSE
               E(J,I) = E(J,I+1) - E(J,I)
             END IF
345         CONTINUE
350       CONTINUE
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          DO 360  I = 2, M
            A(I-1,I) = DWORK((I-2) * 4 + 3)
            A(I,I) = -TWO * DWORK((I-2) * 4 + 3) - DWORK((I-1) * 4 + 2)
            A(I,1) = DWORK((I-1) * 4 + 2) - DWORK((I-2) * 4 + 2)
            A(I-1,M+I-1) = DWORK((I-1) * 4)
            A(I,M+I-1) = -TWO * DWORK((I-1) * 4)
            IF (I .LT. M) THEN
              A(I+1,I) = DWORK((I-2) * 4 + 3)
              DO 355  J = I+1, M
                A(J,I) = A(J,I) + DWORK((J-2) * 4 + 2)
     1                          - DWORK((J-1) * 4 + 2)
355           CONTINUE
              A(I+1,M+I-1) = DWORK((I-1) * 4)
            END IF
360       CONTINUE
          A(1,1) = -DWORK(2)
          A(1,2) = -DWORK(3)
          A(1,M+1) = -A(1,M+1)
          CALL DLASET('A', M-1, M-1, ZERO, ONE, A(M+1,2), LDA)
          CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
          CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
          DO 370 I = 2, M
            B(I,I) = -ONE
            B(I,I-1) = ONE
            C(I,I) = DWORK((I-2) * 4 + 3)
            C(I,M+I-1) = DWORK((I-1) * 4)
370       CONTINUE
          B(1,1) = ONE
          C(1,1) = ONE
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE
          INFO = -2
        END IF
C
      ELSE IF (NR(1) .EQ. 4) THEN
        IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
          INFO = -1
          RETURN
        END IF
C
        IF (NR(2) .EQ. 1) THEN
          NOTE = 'Rosen/Wang 1995: control of 1-dim. heat flow'
          IF (LSAME(DEF,'D')) THEN
            IPAR(1) = 100
            DPAR(1) = .1D-1
            DPAR(2) = ONE
            DPAR(3) = ONE
            DPAR(4) = .2D0
            DPAR(5) = .3D0
            DPAR(6) = .2D0
            DPAR(7) = .3D0
          END IF
          IF (IPAR(1) .LT. 2) INFO = -4
          N = IPAR(1)
          M = 1
          P = 1
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          VEC(4) = .TRUE.
          APPIND = DBLE(N + 1)
          TTEMP = -DPAR(1) * APPIND
          TEMP = 1 / (.6D1 * APPIND)
          CALL DLASET('A', N, N, ZERO, FOUR*TEMP, E, LDE)
          CALL DLASET('A', N, N, ZERO, TWO*TTEMP, A, LDA)
          DO 410  I = 1, N - 1
            A(I+1,I) = -TTEMP
            A(I,I+1) = -TTEMP
            E(I+1,I) = TEMP
            E(I,I+1) = TEMP
410       CONTINUE
          DO 420  I = 1, N
            B1 = MAX(DBLE(I-1)/APPIND, DPAR(4))
            B2 = MIN(DBLE(I+1)/APPIND, DPAR(5))
            C1 = MAX(DBLE(I-1)/APPIND, DPAR(6))
            C2 = MIN(DBLE(I+1)/APPIND, DPAR(7))
            IF (B1 .GE. B2) THEN
              B(I,1) = ZERO
            ELSE
              B(I,1) = B2 - B1
              TEMP   = MIN(B2, DBLE(I)/APPIND)
              IF (B1 .LT. TEMP) THEN
                B(I,1) = B(I,1) + APPIND*(TEMP**2 - B1**2)/TWO
                B(I,1) = B(I,1) + DBLE(I)*(B1 - TEMP)
              END IF
              TEMP = MAX(B1, DBLE(I)/APPIND)
              IF (TEMP .LT. B2) THEN
                B(I,1) = B(I,1) - APPIND*(B2**2 - TEMP**2)/TWO
                B(I,1) = B(I,1) - DBLE(I)*(TEMP - B2)
              END IF
            END IF
            IF (C1 .GE. C2) THEN
              C(1,I) = ZERO
            ELSE
              C(1,I) = C2 - C1
              TEMP   = MIN(C2, DBLE(I)/APPIND)
              IF (C1 .LT. TEMP) THEN
                C(1,I) = C(1,I) + APPIND*(TEMP**2 - C1**2)/TWO
                C(1,I) = C(1,I) + DBLE(I)*(C1 - TEMP)
              END IF
              TEMP = MAX(C1, DBLE(I)/APPIND)
              IF (TEMP .LT. C2) THEN
                C(1,I) = C(1,I) - APPIND*(C2**2 - TEMP**2)/TWO
                C(1,I) = C(1,I) - DBLE(I)*(TEMP - C2)
              END IF
            END IF
420       CONTINUE
          CALL DSCAL(N, DPAR(2), B(1,1), 1)
          CALL DSCAL(N, DPAR(3), C(1,1), LDC)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE IF (NR(2) .EQ. 2) THEN
          NOTE = 'Hench et al. 1995: coupled springs, dashpots, masses'
          IF (LSAME(DEF,'D')) THEN
            IPAR(1) = 30
            DPAR(1) = FOUR
            DPAR(2) = FOUR
            DPAR(3) = ONE
          END IF
          IF (IPAR(1) .LT. 2) INFO = -4
          L = IPAR(1)
          N = 2*L
          M = 2
          P = 2*L
          IF (LDE .LT. N) INFO = -10
          IF (LDA .LT. N) INFO = -12
          IF (LDB .LT. N) INFO = -14
          IF (LDC .LT. P) INFO = -16
          IF (LDD .LT. P) INFO = -18
          IF (INFO .NE. 0) RETURN
C
          VEC(4) = .TRUE.
          CALL DLASET('A', N, N, ZERO, DPAR(1), E, LDE)
          CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
          TEMP = -TWO * DPAR(3)
          DO 430  I = 1, L
            E(I,I) = ONE
            A(I,I+L) = ONE
            A(I+L,I+L) = -DPAR(2)
            IF (I .LT. L) THEN
              A(I+L,I+1) = DPAR(3)
              A(I+L+1,I) = DPAR(3)
              IF (I .GT. 1) THEN
                A(I+L,I) = TEMP
              END IF
            END IF
 430      CONTINUE
          A(L+1,1) = -DPAR(3)
          A(N,L) = -DPAR(3)
          CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
          B(L+1,1) = ONE
          B(N,2) = -ONE
          CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
          CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
        ELSE
          INFO = -2
        END IF
      ELSE
        INFO = -2
      END IF
C
      RETURN
C *** Last Line of BD01AD ***
      END