1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
|
SUBROUTINE BD01AD( DEF, NR, DPAR, IPAR, VEC, N, M, P, E, LDE, A,
1 LDA, B, LDB, C, LDC, D, LDD, NOTE, DWORK,
2 LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To generate benchmark examples for time-invariant,
C continuous-time dynamical systems
C
C .
C E x(t) = A x(t) + B u(t)
C
C y(t) = C x(t) + D u(t)
C
C E, A are real N-by-N matrices, B is N-by-M, C is P-by-N, and
C D is P-by-M. In many examples, E is the identity matrix and D is
C the zero matrix.
C
C This routine is an implementation of the benchmark library
C CTDSX (Version 1.0) described in [1].
C
C ARGUMENTS
C
C Mode Parameters
C
C DEF CHARACTER*1
C Specifies the kind of values used as parameters when
C generating parameter-dependent and scalable examples
C (i.e., examples with NR(1) = 2, 3, or 4):
C = 'D': Default values defined in [1] are used;
C = 'N': Values set in DPAR and IPAR are used.
C This parameter is not referenced if NR(1) = 1.
C Note that the scaling parameter of examples with
C NR(1) = 3 or 4 is considered as a regular parameter in
C this context.
C
C Input/Output Parameters
C
C NR (input) INTEGER array, dimension (2)
C Specifies the index of the desired example according
C to [1].
C NR(1) defines the group:
C 1 : parameter-free problems of fixed size
C 2 : parameter-dependent problems of fixed size
C 3 : parameter-free problems of scalable size
C 4 : parameter-dependent problems of scalable size
C NR(2) defines the number of the benchmark example
C within a certain group according to [1].
C
C DPAR (input/output) DOUBLE PRECISION array, dimension (7)
C On entry, if DEF = 'N' and the desired example depends on
C real parameters, then the array DPAR must contain the
C values for these parameters.
C For an explanation of the parameters see [1].
C For Examples 2.1 and 2.2, DPAR(1) defines the parameter
C 'epsilon'.
C For Example 2.4, DPAR(1), ..., DPAR(7) define 'b', 'mu',
C 'r', 'r_c', 'k_l', 'sigma', 'a', respectively.
C For Example 2.7, DPAR(1) and DPAR(2) define 'mu' and 'nu',
C respectively.
C For Example 4.1, DPAR(1), ..., DPAR(7) define 'a', 'b',
C 'c', 'beta_1', 'beta_2', 'gamma_1', 'gamma_2',
C respectively.
C For Example 4.2, DPAR(1), ..., DPAR(3) define 'mu',
C 'delta', 'kappa', respectively.
C On exit, if DEF = 'D' and the desired example depends on
C real parameters, then the array DPAR is overwritten by the
C default values given in [1].
C
C IPAR (input/output) INTEGER array, dimension (1)
C On entry, if DEF = 'N' and the desired example depends on
C integer parameters, then the array IPAR must contain the
C values for these parameters.
C For an explanation of the parameters see [1].
C For Examples 2.3, 2.5, and 2.6, IPAR(1) defines the
C parameter 's'.
C For Example 3.1, IPAR(1) defines 'q'.
C For Examples 3.2 and 3.3, IPAR(1) defines 'n'.
C For Example 3.4, IPAR(1) defines 'l'.
C For Example 4.1, IPAR(1) defines 'n'.
C For Example 4.2, IPAR(1) defines 'l'.
C On exit, if DEF = 'D' and the desired example depends on
C integer parameters, then the array IPAR is overwritten by
C the default values given in [1].
C
C VEC (output) LOGICAL array, dimension (8)
C Flag vector which displays the availabilty of the output
C data:
C VEC(1), ..., VEC(3) refer to N, M, and P, respectively,
C and are always .TRUE..
C VEC(4) is .TRUE. iff E is NOT the identity matrix.
C VEC(5), ..., VEC(7) refer to A, B, and C, respectively,
C and are always .TRUE..
C VEC(8) is .TRUE. iff D is NOT the zero matrix.
C
C N (output) INTEGER
C The actual state dimension, i.e., the order of the
C matrices E and A.
C
C M (output) INTEGER
C The number of columns in the matrices B and D.
C
C P (output) INTEGER
C The number of rows in the matrices C and D.
C
C E (output) DOUBLE PRECISION array, dimension (LDE,N)
C The leading N-by-N part of this array contains the
C matrix E.
C NOTE that this array is overwritten (by the identity
C matrix), if VEC(4) = .FALSE..
C
C LDE INTEGER
C The leading dimension of array E. LDE >= N.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array contains the
C matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= N.
C
C B (output) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array contains the
C matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= N.
C
C C (output) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array contains the
C matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= P.
C
C D (output) DOUBLE PRECISION array, dimension (LDD,M)
C The leading P-by-M part of this array contains the
C matrix D.
C NOTE that this array is overwritten (by the zero
C matrix), if VEC(8) = .FALSE..
C
C LDD INTEGER
C The leading dimension of array D. LDD >= P.
C
C NOTE (output) CHARACTER*70
C String containing short information about the chosen
C example.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK.
C For Example 3.4, LDWORK >= 4*IPAR(1) is required.
C For the other examples, no workspace is needed, i.e.,
C LDWORK >= 1.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value; in particular, INFO = -3 or -4 indicates
C that at least one of the parameters in DPAR or
C IPAR, respectively, has an illegal value;
C = 1: data file can not be opened or has wrong format.
C
C
C REFERENCES
C
C [1] Kressner, D., Mehrmann, V. and Penzl, T.
C CTDSX - a Collection of Benchmark Examples for State-Space
C Realizations of Continuous-Time Dynamical Systems.
C SLICOT Working Note 1998-9. 1998.
C
C NUMERICAL ASPECTS
C
C None
C
C CONTRIBUTOR
C
C D. Kressner, V. Mehrmann, and T. Penzl (TU Chemnitz)
C
C For questions concerning the collection or for the submission of
C test examples, please contact Volker Mehrmann
C (Email: volker.mehrmann@mathematik.tu-chemnitz.de).
C
C REVISIONS
C
C June 1999, V. Sima.
C
C KEYWORDS
C
C continuous-time dynamical systems
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, PI
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
1 THREE = 3.0D0, FOUR = 4.0D0,
2 PI = .3141592653589793D1 )
C .. Scalar Arguments ..
CHARACTER DEF
CHARACTER*70 NOTE
INTEGER INFO, LDA, LDB, LDC, LDD, LDE, LDWORK, M, N, P
C .. Array Arguments ..
LOGICAL VEC(8)
INTEGER IPAR(*), NR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DPAR(*),
1 DWORK(*), E(LDE,*)
C .. Local Scalars ..
CHARACTER*12 DATAF
INTEGER I, J, L, STATUS
DOUBLE PRECISION APPIND, B1, B2, C1, C2, TEMP, TTEMP
C .. Local Arrays ..
LOGICAL VECDEF(8)
C .. External Functions ..
C . LAPACK .
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
C . BLAS .
EXTERNAL DSCAL
C . LAPACK .
EXTERNAL DLASET
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
C .. Data Statements ..
C . default values for availabities .
DATA VECDEF /.TRUE., .TRUE., .TRUE., .FALSE.,
1 .TRUE., .TRUE., .TRUE., .FALSE./
C
C .. Executable Statements ..
C
INFO = 0
DO 10 I = 1, 8
VEC(I) = VECDEF(I)
10 CONTINUE
C
IF (NR(1) .EQ. 1) THEN
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Laub 1979, Ex.1'
N = 2
M = 1
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,2) = ONE
B(1,1) = ZERO
B(2,1) = ONE
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'Laub 1979, Ex.2: uncontrollable-unobservable data'
N = 2
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
A(1,1) = FOUR
A(2,1) = -.45D1
A(1,2) = .3D1
A(2,2) = -.35D1
B(1,1) = ONE
B(2,1) = -ONE
C(1,1) = THREE
C(1,2) = TWO
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 3) THEN
NOTE = 'Beale/Shafai 1989: model of L-1011 aircraft'
N = 4
M = 2
P = 4
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 4) THEN
NOTE = 'Bhattacharyya et al. 1983: binary distillation column'
N = 8
M = 2
P = 8
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 5) THEN
NOTE = 'Patnaik et al. 1980: tubular ammonia reactor'
N = 9
M = 3
P = 9
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 6) THEN
NOTE = 'Davison/Gesing 1978: J-100 jet engine'
N = 30
M = 3
P = 5
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 7) THEN
NOTE = 'Davison 1967: binary distillation column'
N = 11
M = 3
P = 3
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(2,1) = ONE
C(1,10) = ONE
C(3,11) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
ELSE IF (NR(2) .EQ. 8) THEN
NOTE = 'Chien/Ergin/Ling/Lee 1958: drum boiler'
N = 9
M = 3
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,6) = ONE
C(2,9) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 9) THEN
NOTE = 'Ly, Gangsaas 1981: B-767 airplane'
N = 55
M = 2
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 10) THEN
NOTE = 'control surface servo for an underwater vehicle'
N = 8
M = 2
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,7) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
ELSE
INFO = -2
END IF
C
IF ((NR(2) .GE. 3) .AND. (NR(2) .LE. 10)) THEN
C .. loading data files
WRITE (DATAF(1:11), '(A,I2.2,A)') 'BD011', NR(2), '.dat'
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = DATAF(1:11))
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 110 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (A(I,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
110 CONTINUE
DO 120 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (B(I,J), J = 1, M)
IF (STATUS .NE. 0) INFO = 1
120 CONTINUE
IF ((NR(2) .EQ. 6) .OR. (NR(2) .EQ. 9)) THEN
DO 130 I = 1, P
READ (1, FMT = *, IOSTAT = STATUS) (C(I,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
130 CONTINUE
END IF
END IF
CLOSE(1)
END IF
C
ELSE IF (NR(1) .EQ. 2) THEN
IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
INFO = -1
RETURN
END IF
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Chow/Kokotovic 1976: magnetic tape control system'
IF (LSAME(DEF,'D')) DPAR(1) = 1D-6
IF (DPAR(1) .EQ. ZERO) INFO = -3
N = 4
M = 1
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,2) = .400D0
A(2,3) = .345D0
A(3,2) = -.524D0/DPAR(1)
A(3,3) = -.465D0/DPAR(1)
A(3,4) = .262D0/DPAR(1)
A(4,4) = -ONE/DPAR(1)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(4,1) = ONE/DPAR(1)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,1) = ONE
C(2,3) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'Arnold/Laub 1984'
IF (LSAME(DEF,'D')) DPAR(1) = 1D-6
N = 4
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, DPAR(1), A, LDA)
A(1,1) = -DPAR(1)
A(2,1) = -ONE
A(1,2) = ONE
A(2,2) = -DPAR(1)
A(4,3) = -ONE
A(3,4) = ONE
CALL DLASET('A', N, M, ONE, ONE, B, LDB)
CALL DLASET('A', P, N, ONE, ONE, C, LDC)
D(1,1) = ZERO
C
ELSE IF (NR(2) .EQ. 3) THEN
NOTE = 'Vertical acceleration of a rigid guided missile'
IF (LSAME(DEF,'D')) IPAR(1) = 1
IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 10)) INFO = -4
N = 3
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(2,1) = ONE
A(3,3) = -.19D3
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(3,1) = .19D3
D(1,1) = ZERO
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD01203.dat')
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 210 I = 1, IPAR(1)
READ (1, FMT = *, IOSTAT = STATUS) (A(1,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
READ (1, FMT = *, IOSTAT = STATUS) (A(2,J), J = 2, N)
IF (STATUS .NE. 0) INFO = 1
READ (1, FMT = *, IOSTAT = STATUS) (C(1,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
210 CONTINUE
END IF
CLOSE(1)
C
ELSE IF (NR(2) .EQ. 4) THEN
NOTE = 'Senning 1980: hydraulic positioning system'
IF (LSAME(DEF,'D')) THEN
DPAR(1) = .14D5
DPAR(2) = .1287D0
DPAR(3) = .15D0
DPAR(4) = .1D-1
DPAR(5) = .2D-2
DPAR(6) = .24D0
DPAR(7) = .1075D2
END IF
IF (((DPAR(1) .LE. .9D4) .OR. (DPAR(1) .GE. .16D5)) .OR.
1 ((DPAR(2) .LE. .5D-1) .OR. (DPAR(2) .GE. .3D0)) .OR.
2 ((DPAR(3) .LE. .5D-1) .OR. (DPAR(3) .GE. .5D1)) .OR.
3 ((DPAR(4) .LE. ZERO) .OR. (DPAR(4) .GE. .5D-1)) .OR.
4 ((DPAR(5) .LE. .103D-3) .OR. (DPAR(5) .GE. .35D-2)) .OR.
5 ((DPAR(6) .LE. .1D-2) .OR. (DPAR(6) .GE. .15D2)) .OR.
6 ((DPAR(7) .LE. .105D2) .OR. (DPAR(7) .GE. .111D2))) THEN
INFO = -3
END IF
N = 3
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,2) = ONE
A(2,2) = -(DPAR(3) + FOUR*DPAR(4)/PI) / DPAR(2)
A(2,3) = DPAR(7) / DPAR(2)
A(3,2) = -FOUR * DPAR(7) * DPAR(1) / .874D3
A(3,3) = -FOUR * DPAR(1) * (DPAR(6) + DPAR(5)) / .874D3
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(3,1) = -FOUR * DPAR(1) / .874D3
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
D(1,1) = 0
C
ELSE IF (NR(2) .EQ. 5) THEN
NOTE = 'Kwakernaak/Westdyk 1985: cascade of inverted pendula'
IF (LSAME(DEF,'D')) IPAR(1) = 1
IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 7)) INFO = -4
IF (IPAR(1) .LE. 6) THEN
M = IPAR(1)
ELSE
M = 10
END IF
N = 2 * M
P = M
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
WRITE (DATAF(1:12), '(A,I1,A)') 'BD01205', IPAR(1), '.dat'
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = DATAF(1:12))
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 220 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (A(I,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
220 CONTINUE
DO 230 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (B(I,J), J = 1, M)
IF (STATUS .NE. 0) INFO = 1
230 CONTINUE
DO 240 I = 1, P
READ (1, FMT = *, IOSTAT = STATUS) (C(I,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
240 CONTINUE
END IF
CLOSE(1)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 6) THEN
NOTE = 'Kallstrom/Astrom 1981: regulation of a ship heading'
IF (LSAME(DEF,'D')) IPAR(1) = 1
IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 5)) INFO = -4
N = 3
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(3,2) = ONE
B(3,1) = ZERO
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,3) = ONE
D(1,1) = ZERO
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD01206.dat')
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 250 I = 1, IPAR(1)
READ (1, FMT = *, IOSTAT = STATUS) (A(1,J), J = 1, 2)
IF (STATUS .NE. 0) INFO = 1
READ (1, FMT = *, IOSTAT = STATUS) (A(2,J), J = 1, 2)
IF (STATUS .NE. 0) INFO = 1
READ (1, FMT = *, IOSTAT = STATUS) (B(J,1), J = 1, 2)
IF (STATUS .NE. 0) INFO = 1
250 CONTINUE
END IF
CLOSE(1)
C
ELSE IF (NR(2) .EQ. 7) THEN
NOTE = 'Ackermann 1989: track-guided bus'
IF (LSAME(DEF,'D')) THEN
DPAR(1) = .15D2
DPAR(2) = .1D2
END IF
IF ((DPAR(1) .LT. .995D1) .OR. (DPAR(1) .GT. .16D2)) INFO = -3
IF ((DPAR(1) .LT. .1D1) .OR. (DPAR(1) .GT. .2D2)) INFO = -3
N = 5
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,1) = -.668D3 / (DPAR(1)*DPAR(2))
A(1,2) = -ONE + .1804D3 / (DPAR(1)*DPAR(2)**2)
A(2,1) = .1804D3 / (.1086D2*DPAR(1))
A(2,2) = -.44175452D4 / (.1086D2*DPAR(1)*DPAR(2))
A(1,5) = 198 / (DPAR(1)*DPAR(2))
A(2,5) = .72666D3 / (.1086D2*DPAR(1))
A(3,1) = DPAR(2)
A(3,4) = DPAR(2)
A(4,2) = ONE
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(5,1) = ONE
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,3) = ONE
C(1,4) = .612D1
D(1,1) = 0
C
ELSE
INFO = -2
END IF
C
ELSE IF (NR(1) .EQ. 3) THEN
IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
INFO = -1
RETURN
END IF
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Laub 1979, Ex.4: string of high speed vehicles'
IF (LSAME(DEF,'D')) IPAR(1) = 20
IF (IPAR(1) .LT. 2) INFO = -4
N = 2*IPAR(1) - 1
M = IPAR(1)
P = IPAR(1) - 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
DO 310 I = 1, N
IF (MOD(I,2) .EQ. 1) THEN
A(I,I) = -ONE
B(I,(I+1)/2) = ONE
ELSE
A(I,I-1) = ONE
A(I,I+1) = -ONE
C(I/2,I) = ONE
END IF
310 CONTINUE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'Hodel et al. 1996: heat flow in a thin rod'
IF (LSAME(DEF,'D')) IPAR(1) = 100
IF (IPAR(1) .LT. 1) INFO = -4
N = IPAR(1)
M = 1
P = N
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
TEMP = DBLE(N + 1)
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, -TWO * TEMP, A, LDA)
A(1,1) = -TEMP
DO 320 I = 1, N - 1
A(I,I+1) = TEMP
A(I+1,I) = TEMP
320 CONTINUE
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(N,1) = TEMP
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 3) THEN
NOTE = 'Laub 1979, Ex.6'
IF (LSAME(DEF,'D')) IPAR(1) = 21
IF (IPAR(1) .LT. 1) INFO = -4
N = IPAR(1)
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
CALL DLASET('A', N-1, N-1, ZERO, ONE, A(1,2), LDA)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(N,1) = ONE
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,1) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 4) THEN
NOTE = 'Lang/Penzl 1994: rotating axle'
IF (LSAME(DEF,'D')) IPAR(1) = 211
IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 211)) INFO = -4
N = 2*IPAR(1) - 1
M = IPAR(1)
P = IPAR(1)
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (LDWORK .LT. M*4) INFO = -21
IF (INFO .NE. 0) RETURN
C
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD01304.dat')
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 330 I = 1, M*4
READ (1, FMT = *, IOSTAT = STATUS) DWORK(I)
IF (STATUS .NE. 0) INFO = 1
330 CONTINUE
END IF
CLOSE(1)
IF (INFO .NE. 0) RETURN
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
E(1,1) = DWORK(1)
DO 340 I = 2, M
E(I,I-1) = DWORK((I-2) * 4 + 1)
E(I,I) = -DWORK((I-1) * 4 + 1)
340 CONTINUE
E(M,M) = -E(M,M)
DO 350 I = M-1, 1, -1
DO 345 J = I, M
IF (I .EQ. 1) THEN
E(J,I) = E(J,I) - E(J,I+1)
ELSE
E(J,I) = E(J,I+1) - E(J,I)
END IF
345 CONTINUE
350 CONTINUE
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
DO 360 I = 2, M
A(I-1,I) = DWORK((I-2) * 4 + 3)
A(I,I) = -TWO * DWORK((I-2) * 4 + 3) - DWORK((I-1) * 4 + 2)
A(I,1) = DWORK((I-1) * 4 + 2) - DWORK((I-2) * 4 + 2)
A(I-1,M+I-1) = DWORK((I-1) * 4)
A(I,M+I-1) = -TWO * DWORK((I-1) * 4)
IF (I .LT. M) THEN
A(I+1,I) = DWORK((I-2) * 4 + 3)
DO 355 J = I+1, M
A(J,I) = A(J,I) + DWORK((J-2) * 4 + 2)
1 - DWORK((J-1) * 4 + 2)
355 CONTINUE
A(I+1,M+I-1) = DWORK((I-1) * 4)
END IF
360 CONTINUE
A(1,1) = -DWORK(2)
A(1,2) = -DWORK(3)
A(1,M+1) = -A(1,M+1)
CALL DLASET('A', M-1, M-1, ZERO, ONE, A(M+1,2), LDA)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
DO 370 I = 2, M
B(I,I) = -ONE
B(I,I-1) = ONE
C(I,I) = DWORK((I-2) * 4 + 3)
C(I,M+I-1) = DWORK((I-1) * 4)
370 CONTINUE
B(1,1) = ONE
C(1,1) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE
INFO = -2
END IF
C
ELSE IF (NR(1) .EQ. 4) THEN
IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
INFO = -1
RETURN
END IF
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Rosen/Wang 1995: control of 1-dim. heat flow'
IF (LSAME(DEF,'D')) THEN
IPAR(1) = 100
DPAR(1) = .1D-1
DPAR(2) = ONE
DPAR(3) = ONE
DPAR(4) = .2D0
DPAR(5) = .3D0
DPAR(6) = .2D0
DPAR(7) = .3D0
END IF
IF (IPAR(1) .LT. 2) INFO = -4
N = IPAR(1)
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
VEC(4) = .TRUE.
APPIND = DBLE(N + 1)
TTEMP = -DPAR(1) * APPIND
TEMP = 1 / (.6D1 * APPIND)
CALL DLASET('A', N, N, ZERO, FOUR*TEMP, E, LDE)
CALL DLASET('A', N, N, ZERO, TWO*TTEMP, A, LDA)
DO 410 I = 1, N - 1
A(I+1,I) = -TTEMP
A(I,I+1) = -TTEMP
E(I+1,I) = TEMP
E(I,I+1) = TEMP
410 CONTINUE
DO 420 I = 1, N
B1 = MAX(DBLE(I-1)/APPIND, DPAR(4))
B2 = MIN(DBLE(I+1)/APPIND, DPAR(5))
C1 = MAX(DBLE(I-1)/APPIND, DPAR(6))
C2 = MIN(DBLE(I+1)/APPIND, DPAR(7))
IF (B1 .GE. B2) THEN
B(I,1) = ZERO
ELSE
B(I,1) = B2 - B1
TEMP = MIN(B2, DBLE(I)/APPIND)
IF (B1 .LT. TEMP) THEN
B(I,1) = B(I,1) + APPIND*(TEMP**2 - B1**2)/TWO
B(I,1) = B(I,1) + DBLE(I)*(B1 - TEMP)
END IF
TEMP = MAX(B1, DBLE(I)/APPIND)
IF (TEMP .LT. B2) THEN
B(I,1) = B(I,1) - APPIND*(B2**2 - TEMP**2)/TWO
B(I,1) = B(I,1) - DBLE(I)*(TEMP - B2)
END IF
END IF
IF (C1 .GE. C2) THEN
C(1,I) = ZERO
ELSE
C(1,I) = C2 - C1
TEMP = MIN(C2, DBLE(I)/APPIND)
IF (C1 .LT. TEMP) THEN
C(1,I) = C(1,I) + APPIND*(TEMP**2 - C1**2)/TWO
C(1,I) = C(1,I) + DBLE(I)*(C1 - TEMP)
END IF
TEMP = MAX(C1, DBLE(I)/APPIND)
IF (TEMP .LT. C2) THEN
C(1,I) = C(1,I) - APPIND*(C2**2 - TEMP**2)/TWO
C(1,I) = C(1,I) - DBLE(I)*(TEMP - C2)
END IF
END IF
420 CONTINUE
CALL DSCAL(N, DPAR(2), B(1,1), 1)
CALL DSCAL(N, DPAR(3), C(1,1), LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'Hench et al. 1995: coupled springs, dashpots, masses'
IF (LSAME(DEF,'D')) THEN
IPAR(1) = 30
DPAR(1) = FOUR
DPAR(2) = FOUR
DPAR(3) = ONE
END IF
IF (IPAR(1) .LT. 2) INFO = -4
L = IPAR(1)
N = 2*L
M = 2
P = 2*L
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
VEC(4) = .TRUE.
CALL DLASET('A', N, N, ZERO, DPAR(1), E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
TEMP = -TWO * DPAR(3)
DO 430 I = 1, L
E(I,I) = ONE
A(I,I+L) = ONE
A(I+L,I+L) = -DPAR(2)
IF (I .LT. L) THEN
A(I+L,I+1) = DPAR(3)
A(I+L+1,I) = DPAR(3)
IF (I .GT. 1) THEN
A(I+L,I) = TEMP
END IF
END IF
430 CONTINUE
A(L+1,1) = -DPAR(3)
A(N,L) = -DPAR(3)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(L+1,1) = ONE
B(N,2) = -ONE
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE
INFO = -2
END IF
ELSE
INFO = -2
END IF
C
RETURN
C *** Last Line of BD01AD ***
END
|