1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
SUBROUTINE BD02AD( DEF, NR, DPAR, IPAR, VEC, N, M, P, E, LDE, A,
1 LDA, B, LDB, C, LDC, D, LDD, NOTE, DWORK,
2 LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To generate benchmark examples for time-invariant,
C discrete-time dynamical systems
C
C E x_k+1 = A x_k + B u_k
C
C y_k = C x_k + D u_k
C
C E, A are real N-by-N matrices, B is N-by-M, C is P-by-N, and
C D is P-by-M. In many examples, E is the identity matrix and D is
C the zero matrix.
C
C This routine is an implementation of the benchmark library
C DTDSX (Version 1.0) described in [1].
C
C ARGUMENTS
C
C Mode Parameters
C
C DEF CHARACTER*1
C Specifies the kind of values used as parameters when
C generating parameter-dependent and scalable examples
C (i.e., examples with NR(1) = 2, 3, or 4):
C = 'D': Default values defined in [1] are used;
C = 'N': Values set in DPAR and IPAR are used.
C This parameter is not referenced if NR(1) = 1.
C Note that the scaling parameter of examples with
C NR(1) = 3 or 4 is considered as a regular parameter in
C this context.
C
C Input/Output Parameters
C
C NR (input) INTEGER array, dimension (2)
C Specifies the index of the desired example according
C to [1].
C NR(1) defines the group:
C 1 : parameter-free problems of fixed size
C 2 : parameter-dependent problems of fixed size
C 3 : parameter-free problems of scalable size
C 4 : parameter-dependent problems of scalable size
C NR(2) defines the number of the benchmark example
C within a certain group according to [1].
C
C DPAR (input/output) DOUBLE PRECISION array, dimension (7)
C On entry, if DEF = 'N' and the desired example depends on
C real parameters, then the array DPAR must contain the
C values for these parameters.
C For an explanation of the parameters see [1].
C For Example 2.1, DPAR(1), ..., DPAR(3) define the
C parameters 'tau', 'delta', 'K', respectively.
C On exit, if DEF = 'D' and the desired example depends on
C real parameters, then the array DPAR is overwritten by the
C default values given in [1].
C
C IPAR (input/output) INTEGER array, dimension (1)
C On entry, if DEF = 'N' and the desired example depends on
C integer parameters, then the array IPAR must contain the
C values for these parameters.
C For an explanation of the parameters see [1].
C For Example 3.1, IPAR(1) defines the parameter 'n'.
C On exit, if DEF = 'D' and the desired example depends on
C integer parameters, then the array IPAR is overwritten by
C the default values given in [1].
C
C VEC (output) LOGICAL array, dimension (8)
C Flag vector which displays the availabilty of the output
C data:
C VEC(1), ..., VEC(3) refer to N, M, and P, respectively,
C and are always .TRUE..
C VEC(4) is .TRUE. iff E is NOT the identity matrix.
C VEC(5), ..., VEC(7) refer to A, B, and C, respectively,
C and are always .TRUE..
C VEC(8) is .TRUE. iff D is NOT the zero matrix.
C
C N (output) INTEGER
C The actual state dimension, i.e., the order of the
C matrices E and A.
C
C M (output) INTEGER
C The number of columns in the matrices B and D.
C
C P (output) INTEGER
C The number of rows in the matrices C and D.
C
C E (output) DOUBLE PRECISION array, dimension (LDE,N)
C The leading N-by-N part of this array contains the
C matrix E.
C NOTE that this array is overwritten (by the identity
C matrix), if VEC(4) = .FALSE..
C
C LDE INTEGER
C The leading dimension of array E. LDE >= N.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array contains the
C matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= N.
C
C B (output) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array contains the
C matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= N.
C
C C (output) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array contains the
C matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= P.
C
C D (output) DOUBLE PRECISION array, dimension (LDD,M)
C The leading P-by-M part of this array contains the
C matrix D.
C NOTE that this array is overwritten (by the zero
C matrix), if VEC(8) = .FALSE..
C
C LDD INTEGER
C The leading dimension of array D. LDD >= P.
C
C NOTE (output) CHARACTER*70
C String containing short information about the chosen
C example.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C NOTE that DWORK is not used in the current version
C of BD02AD.
C
C LDWORK INTEGER
C LDWORK >= 1.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value; in particular, INFO = -3 or -4 indicates
C that at least one of the parameters in DPAR or
C IPAR, respectively, has an illegal value;
C = 1: data file can not be opened or has wrong format.
C
C REFERENCES
C
C [1] Kressner, D., Mehrmann, V. and Penzl, T.
C DTDSX - a Collection of Benchmark Examples for State-Space
C Realizations of Discrete-Time Dynamical Systems.
C SLICOT Working Note 1998-10. 1998.
C
C NUMERICAL ASPECTS
C
C None
C
C CONTRIBUTOR
C
C D. Kressner, V. Mehrmann, and T. Penzl (TU Chemnitz)
C
C For questions concerning the collection or for the submission of
C test examples, please contact Volker Mehrmann
C (Email: volker.mehrmann@mathematik.tu-chemnitz.de).
C
C REVISIONS
C
C June 1999, V. Sima.
C
C KEYWORDS
C
C discrete-time dynamical systems
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, PI
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
1 THREE = 3.0D0, FOUR = 4.0D0,
2 PI = .3141592653589793D1 )
C .. Scalar Arguments ..
CHARACTER DEF
CHARACTER*70 NOTE
INTEGER INFO, LDA, LDB, LDC, LDD, LDE, LDWORK, M, N, P
C .. Array Arguments ..
LOGICAL VEC(8)
INTEGER IPAR(*), NR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DPAR(*),
1 DWORK(*), E(LDE,*)
C .. Local Scalars ..
CHARACTER*12 DATAF
INTEGER I, J, STATUS
DOUBLE PRECISION TEMP
C .. Local Arrays ..
LOGICAL VECDEF(8)
C .. External Functions ..
C . LAPACK .
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
C . LAPACK .
EXTERNAL DLASET
C .. Data Statements ..
C . default values for availabities .
DATA VECDEF /.TRUE., .TRUE., .TRUE., .FALSE.,
1 .TRUE., .TRUE., .TRUE., .FALSE./
C
C .. Executable Statements ..
C
INFO = 0
DO 10 I = 1, 8
VEC(I) = VECDEF(I)
10 CONTINUE
C
IF (NR(1) .EQ. 1) THEN
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Laub 1979, Ex. 2: uncontrollable-unobservable data'
N = 2
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
A(1,1) = FOUR
A(2,1) = -.45D1
A(1,2) = THREE
A(2,2) = -.35D1
CALL DLASET('A', N, M, -ONE, ONE, B, LDB)
C(1,1) = 3.0D0
C(1,2) = 2.0D0
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'Laub 1979, Ex. 3'
N = 2
M = 2
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,1) = .9512D0
A(2,2) = .9048D0
B(1,1) = .4877D1
B(1,2) = .4877D1
B(2,1) = -.11895D1
B(2,2) = .3569D1
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 3) THEN
NOTE = 'Van Dooren 1981, Ex. II'
N = 2
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
A(1,1) = TWO
A(2,1) = ONE
A(1,2) = -ONE
A(2,2) = ZERO
CALL DLASET('A', N, M, ZERO, ONE, B, LDB)
CALL DLASET('A', P, N, ONE, ZERO, C, LDC)
D(1,1) = ZERO
C
ELSE IF (NR(2) .EQ. 4) THEN
NOTE = 'Ionescu/Weiss 1992'
N = 2
M = 2
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,2) = ONE
A(2,2) = -ONE
CALL DLASET('A', N, M, ZERO, ONE, B, LDB)
B(2,1) = TWO
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 5) THEN
NOTE = 'Jonckheere 1981'
N = 2
M = 1
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,2) = ONE
CALL DLASET('A', N, M, ONE, ZERO, B, LDB)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 6) THEN
NOTE = 'Ackerson/Fu 1970: satellite control problem'
N = 4
M = 2
P = 4
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 7) THEN
NOTE = 'Litkouhi 1983: system with slow and fast modes'
N = 4
M = 2
P = 4
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 8) THEN
NOTE = 'Lu/Lin 1993, Ex. 4.3'
N = 4
M = 4
P = 4
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('U', P, N, ONE, ONE, C, LDC)
C(1,3) = TWO
C(1,4) = FOUR
C(2,4) = TWO
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 9) THEN
NOTE = 'Gajic/Shen 1993, Section 2.7.4: chemical plant'
N = 5
M = 2
P = 5
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 10) THEN
NOTE = 'Davison/Wang 1974'
N = 6
M = 2
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
VEC(8) = .TRUE.
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,2) = ONE
A(2,3) = ONE
A(4,5) = ONE
A(5,6) = ONE
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(3,1) = ONE
B(6,2) = ONE
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,1) = ONE
C(1,2) = ONE
C(2,4) = ONE
C(2,5) = -ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
D(1,1) = ONE
D(2,1) = ONE
C
ELSE IF (NR(2) .EQ. 11) THEN
NOTE = 'Patnaik et al. 1980: tubular ammonia reactor'
N = 9
M = 3
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,1) = ONE
C(2,5) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 12) THEN
NOTE = 'Smith 1969: two-stand cold rolling mill'
N = 10
M = 3
P = 5
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
VEC(8) = .TRUE.
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
CALL DLASET('A', N, N, ZERO, ONE, A(2,1), LDA)
A(1,10) = .112D0
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(1,1) = .276D1
B(1,2) = -.135D1
B(1,3) = -.46D0
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,1) = ONE
C(2,10) = .894D0
C(3,10) = -.1693D2
C(4,10) = .7D-1
C(5,10) = .398D0
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD02112.dat')
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 110 I = 1, P
READ (1, FMT = *, IOSTAT = STATUS) (D(I,J), J = 1, M)
IF (STATUS .NE. 0) INFO = 1
110 CONTINUE
END IF
CLOSE(1)
C
ELSE
INFO = -2
END IF
C
IF (((NR(2) .GE. 6) .AND. (NR(2) .LE. 9)) .OR.
1 (NR(2) .EQ. 11)) THEN
C .. loading data files
WRITE (DATAF(1:11), '(A,I2.2,A)') 'BD021', NR(2), '.dat'
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = DATAF(1:11))
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 120 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (A(I,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
120 CONTINUE
DO 130 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (B(I,J), J = 1, M)
IF (STATUS .NE. 0) INFO = 1
130 CONTINUE
END IF
CLOSE(1)
END IF
C
ELSE IF (NR(1) .EQ. 2) THEN
IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
INFO = -1
RETURN
END IF
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Pappas et al. 1980: process control of paper machine'
IF (LSAME(DEF,'D')) THEN
DPAR(1) = .1D9
DPAR(2) = ONE
DPAR(3) = ONE
END IF
IF (DPAR(1) .EQ. ZERO) INFO = -3
N = 4
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
TEMP = DPAR(2) / DPAR(1)
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
CALL DLASET('A', N-1, N-1, ZERO, ONE, A(2,1), LDA)
A(1,1) = ONE - TEMP
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(1,1) = DPAR(3) * TEMP
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,4) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE
INFO = -2
END IF
C
ELSE IF (NR(1) .EQ. 3) THEN
IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
INFO = -1
RETURN
END IF
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Pappas et al. 1980, Ex. 3'
IF (LSAME(DEF,'D')) IPAR(1) = 100
IF (IPAR(1) .LT. 2) INFO = -4
N = IPAR(1)
M = 1
P = N
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
CALL DLASET('A', N-1, N-1, ZERO, ONE, A(1,2), LDA)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(N,1) = ONE
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE
INFO = -2
END IF
C
ELSE
INFO = -2
END IF
C
RETURN
C *** Last Line of BD02AD ***
END
|