File: DE01OD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (203 lines) | stat: -rw-r--r-- 5,453 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
      SUBROUTINE DE01OD( CONV, N, A, B, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the convolution or deconvolution of two real signals
C     A and B.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     CONV    CHARACTER*1
C             Indicates whether convolution or deconvolution is to be
C             performed as follows:
C             = 'C':  Convolution;
C             = 'D':  Deconvolution.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of samples.  N must be a power of 2.  N >= 2.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (N)
C             On entry, this array must contain the first signal.
C             On exit, this array contains the convolution (if
C             CONV = 'C') or deconvolution (if CONV = 'D') of the two
C             signals.
C
C     B       (input) DOUBLE PRECISION array, dimension (N)
C             On entry, this array must contain the second signal.
C             NOTE that this array is overwritten.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     This routine computes the convolution or deconvolution of two real
C     signals A and B using an FFT algorithm (SLICOT Library routine
C     DG01MD).
C
C     REFERENCES
C
C     [1] Rabiner, L.R. and Rader, C.M.
C         Digital Signal Processing.
C         IEEE Press, 1972.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires 0( N*log(N) ) operations.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C     Supersedes Release 2.0 routine DE01CD by R. Dekeyser, State
C     University of Gent, Belgium.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Convolution, deconvolution, digital signal processing, fast
C     Fourier transform, real signals.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, HALF, ONE
      PARAMETER         ( ZERO = 0.0D0, HALF=0.5D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         CONV
      INTEGER           INFO, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(*), B(*)
C     .. Local Scalars ..
      LOGICAL           LCONV
      INTEGER           J, KJ, ND2P1
      DOUBLE PRECISION  AC, AS, AST, BC, BS, CI, CR
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DG01MD, DLADIV, DSCAL, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, MAX, MOD
C     .. Executable Statements ..
C
      INFO = 0
      LCONV = LSAME( CONV, 'C' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LCONV .AND. .NOT.LSAME( CONV, 'D' ) ) THEN
         INFO = -1
      ELSE
         J = 0
         IF( N.GE.2 ) THEN
            J = N
C           WHILE ( MOD( J, 2 ).EQ.0 ) DO
   10       CONTINUE
            IF ( MOD( J, 2 ).EQ.0 ) THEN
               J = J/2
               GO TO 10
            END IF
C           END WHILE 10
         END IF
         IF ( J.NE.1 ) INFO = -2
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'DE01OD', -INFO )
         RETURN
      END IF
C
C     Fourier transform.
C
      CALL DG01MD( 'Direct', N, A, B, INFO )
C
      IF ( LCONV ) THEN
         AST = A(1)*B(1)
      ELSE
         IF ( B(1).EQ.ZERO ) THEN
            AST = ZERO
         ELSE
            AST = A(1)/B(1)
         END IF
      END IF
C
      ND2P1 = N/2 + 1
      J = ND2P1
C
      DO 20 KJ = ND2P1, N
C
C        Components of the transform of function A.
C
         AC = HALF*( A(J) + A(KJ) )
         AS = HALF*( B(J) - B(KJ) )
C
C        Components of the transform of function B.
C
         BC = HALF*( B(KJ) + B(J) )
         BS = HALF*( A(KJ) - A(J) )
C
C        Deconvolution by complex division if CONV = 'D';
C        Convolution by complex multiplication if CONV = 'C'.
C
         IF ( LCONV ) THEN
            CR = AC*BC - AS*BS
            CI = AS*BC + AC*BS
         ELSE
            IF ( MAX( ABS( BC ), ABS( BS ) ).EQ.ZERO ) THEN
               CR = ZERO
               CI = ZERO
            ELSE
               CALL DLADIV( AC, AS, BC, BS, CR, CI )
            END IF
         END IF
C
         A(J)  =  CR
         B(J)  =  CI
         A(KJ) =  CR
         B(KJ) = -CI
         J = J - 1
   20 CONTINUE
      A(1) = AST
      B(1) = ZERO
C
C     Inverse Fourier transform.
C
      CALL DG01MD( 'Inverse', N, A, B, INFO )
C
      CALL DSCAL( N, ONE/DBLE( N ), A, 1 )
C
      RETURN
C *** Last line of DE01OD ***
      END