1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
SUBROUTINE DE01OD( CONV, N, A, B, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the convolution or deconvolution of two real signals
C A and B.
C
C ARGUMENTS
C
C Mode Parameters
C
C CONV CHARACTER*1
C Indicates whether convolution or deconvolution is to be
C performed as follows:
C = 'C': Convolution;
C = 'D': Deconvolution.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of samples. N must be a power of 2. N >= 2.
C
C A (input/output) DOUBLE PRECISION array, dimension (N)
C On entry, this array must contain the first signal.
C On exit, this array contains the convolution (if
C CONV = 'C') or deconvolution (if CONV = 'D') of the two
C signals.
C
C B (input) DOUBLE PRECISION array, dimension (N)
C On entry, this array must contain the second signal.
C NOTE that this array is overwritten.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C This routine computes the convolution or deconvolution of two real
C signals A and B using an FFT algorithm (SLICOT Library routine
C DG01MD).
C
C REFERENCES
C
C [1] Rabiner, L.R. and Rader, C.M.
C Digital Signal Processing.
C IEEE Press, 1972.
C
C NUMERICAL ASPECTS
C
C The algorithm requires 0( N*log(N) ) operations.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C Supersedes Release 2.0 routine DE01CD by R. Dekeyser, State
C University of Gent, Belgium.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Convolution, deconvolution, digital signal processing, fast
C Fourier transform, real signals.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D0, HALF=0.5D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER CONV
INTEGER INFO, N
C .. Array Arguments ..
DOUBLE PRECISION A(*), B(*)
C .. Local Scalars ..
LOGICAL LCONV
INTEGER J, KJ, ND2P1
DOUBLE PRECISION AC, AS, AST, BC, BS, CI, CR
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DG01MD, DLADIV, DSCAL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MOD
C .. Executable Statements ..
C
INFO = 0
LCONV = LSAME( CONV, 'C' )
C
C Test the input scalar arguments.
C
IF( .NOT.LCONV .AND. .NOT.LSAME( CONV, 'D' ) ) THEN
INFO = -1
ELSE
J = 0
IF( N.GE.2 ) THEN
J = N
C WHILE ( MOD( J, 2 ).EQ.0 ) DO
10 CONTINUE
IF ( MOD( J, 2 ).EQ.0 ) THEN
J = J/2
GO TO 10
END IF
C END WHILE 10
END IF
IF ( J.NE.1 ) INFO = -2
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'DE01OD', -INFO )
RETURN
END IF
C
C Fourier transform.
C
CALL DG01MD( 'Direct', N, A, B, INFO )
C
IF ( LCONV ) THEN
AST = A(1)*B(1)
ELSE
IF ( B(1).EQ.ZERO ) THEN
AST = ZERO
ELSE
AST = A(1)/B(1)
END IF
END IF
C
ND2P1 = N/2 + 1
J = ND2P1
C
DO 20 KJ = ND2P1, N
C
C Components of the transform of function A.
C
AC = HALF*( A(J) + A(KJ) )
AS = HALF*( B(J) - B(KJ) )
C
C Components of the transform of function B.
C
BC = HALF*( B(KJ) + B(J) )
BS = HALF*( A(KJ) - A(J) )
C
C Deconvolution by complex division if CONV = 'D';
C Convolution by complex multiplication if CONV = 'C'.
C
IF ( LCONV ) THEN
CR = AC*BC - AS*BS
CI = AS*BC + AC*BS
ELSE
IF ( MAX( ABS( BC ), ABS( BS ) ).EQ.ZERO ) THEN
CR = ZERO
CI = ZERO
ELSE
CALL DLADIV( AC, AS, BC, BS, CR, CI )
END IF
END IF
C
A(J) = CR
B(J) = CI
A(KJ) = CR
B(KJ) = -CI
J = J - 1
20 CONTINUE
A(1) = AST
B(1) = ZERO
C
C Inverse Fourier transform.
C
CALL DG01MD( 'Inverse', N, A, B, INFO )
C
CALL DSCAL( N, ONE/DBLE( N ), A, 1 )
C
RETURN
C *** Last line of DE01OD ***
END
|