1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
SUBROUTINE DE01PD( CONV, WGHT, N, A, B, W, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the convolution or deconvolution of two real signals
C A and B using the Hartley transform.
C
C ARGUMENTS
C
C Mode Parameters
C
C CONV CHARACTER*1
C Indicates whether convolution or deconvolution is to be
C performed as follows:
C = 'C': Convolution;
C = 'D': Deconvolution.
C
C WGHT CHARACTER*1
C Indicates whether the precomputed weights are available
C or not, as follows:
C = 'A': available;
C = 'N': not available.
C Note that if N > 1 and WGHT = 'N' on entry, then WGHT is
C set to 'A' on exit.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of samples. N must be a power of 2. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (N)
C On entry, this array must contain the first signal.
C On exit, this array contains the convolution (if
C CONV = 'C') or deconvolution (if CONV = 'D') of the two
C signals.
C
C B (input) DOUBLE PRECISION array, dimension (N)
C On entry, this array must contain the second signal.
C NOTE that this array is overwritten.
C
C W (input/output) DOUBLE PRECISION array,
C dimension (N - LOG2(N))
C On entry with WGHT = 'A', this array must contain the long
C weight vector computed by a previous call of this routine
C or of the SLICOT Library routine DG01OD.f, with the same
C value of N. If WGHT = 'N', the contents of this array on
C entry is ignored.
C On exit, this array contains the long weight vector.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C This routine computes the convolution or deconvolution of two
C real signals A and B using three scrambled Hartley transforms
C (SLICOT Library routine DG01OD).
C
C REFERENCES
C
C [1] Van Loan, Charles.
C Computational frameworks for the fast Fourier transform.
C SIAM, 1992.
C
C NUMERICAL ASPECTS
C
C The algorithm requires O(N log(N)) floating point operations.
C
C CONTRIBUTOR
C
C D. Kressner, Technical Univ. Berlin, Germany, April 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2000.
C
C KEYWORDS
C
C Convolution, deconvolution, digital signal processing,
C fast Hartley transform, real signals.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION HALF, ONE, TWO
PARAMETER ( HALF = 0.5D0, ONE = 1.0D0, TWO = 2.0D0 )
C .. Scalar Arguments ..
CHARACTER CONV, WGHT
INTEGER INFO, N
C .. Array Arguments ..
DOUBLE PRECISION A(*), B(*), W(*)
C .. Local Scalars ..
LOGICAL LCONV, LWGHT
INTEGER J, L, LEN, M, P1, R1
DOUBLE PRECISION T1, T2, T3
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DG01OD, DLADIV, DSCAL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MOD
C .. Executable Statements ..
C
INFO = 0
LCONV = LSAME( CONV, 'C' )
LWGHT = LSAME( WGHT, 'A' )
C
C Test the input scalar arguments.
C
IF( .NOT.LCONV .AND. .NOT.LSAME( CONV, 'D' ) ) THEN
INFO = -1
ELSE IF( .NOT.LWGHT .AND. .NOT.LSAME( WGHT, 'N' ) ) THEN
INFO = -2
ELSE
M = 0
J = 0
IF( N.GE.1 ) THEN
J = N
C WHILE ( MOD( J, 2 ).EQ.0 ) DO
10 CONTINUE
IF ( MOD( J, 2 ).EQ.0 ) THEN
J = J/2
M = M + 1
GO TO 10
END IF
C END WHILE 10
IF ( J.NE.1 ) INFO = -3
ELSE IF ( N.LT.0 ) THEN
INFO = -3
END IF
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'DE01PD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.LE.0 ) THEN
RETURN
ELSE IF ( N.EQ.1 ) THEN
IF ( LCONV ) THEN
A(1) = A(1)*B(1)
ELSE
A(1) = A(1)/B(1)
END IF
RETURN
END IF
C
C Scrambled Hartley transforms of A and B.
C
CALL DG01OD( 'OutputScrambled', WGHT, N, A, W, INFO )
CALL DG01OD( 'OutputScrambled', WGHT, N, B, W, INFO )
C
C Something similar to a Hadamard product/quotient.
C
LEN = 1
IF( LCONV ) THEN
A(1) = TWO*A(1)*B(1)
A(2) = TWO*A(2)*B(2)
C
DO 30 L = 1, M - 1
LEN = 2*LEN
R1 = 2*LEN
C
DO 20 P1 = LEN + 1, LEN + LEN/2
T1 = B(P1) + B(R1)
T2 = B(P1) - B(R1)
T3 = T2*A(P1)
A(P1) = T1*A(P1) + T2*A(R1)
A(R1) = T1*A(R1) - T3
R1 = R1 - 1
20 CONTINUE
C
30 CONTINUE
C
ELSE
C
A(1) = HALF*A(1)/B(1)
A(2) = HALF*A(2)/B(2)
C
DO 50 L = 1, M - 1
LEN = 2*LEN
R1 = 2*LEN
C
DO 40 P1 = LEN + 1, LEN + LEN/2
CALL DLADIV( A(P1), A(R1), B(P1)+B(R1), B(R1)-B(P1), T1,
$ T2 )
A(P1) = T1
A(R1) = T2
R1 = R1 - 1
40 CONTINUE
C
50 CONTINUE
C
END IF
C
C Transposed Hartley transform of A.
C
CALL DG01OD( 'InputScrambled', WGHT, N, A, W, INFO )
IF ( LCONV ) THEN
CALL DSCAL( N, HALF/DBLE( N ), A, 1 )
ELSE
CALL DSCAL( N, TWO/DBLE( N ), A, 1 )
END IF
C
RETURN
C *** Last line of DE01PD ***
END
|