File: DE01PD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (236 lines) | stat: -rw-r--r-- 6,826 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
      SUBROUTINE DE01PD( CONV, WGHT, N, A, B, W, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the convolution or deconvolution of two real signals
C     A and B using the Hartley transform.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     CONV    CHARACTER*1
C             Indicates whether convolution or deconvolution is to be
C             performed as follows:
C             = 'C':  Convolution;
C             = 'D':  Deconvolution.
C
C     WGHT    CHARACTER*1
C             Indicates whether the precomputed weights are available
C             or not, as follows:
C             = 'A':  available;
C             = 'N':  not available.
C             Note that if N > 1 and WGHT = 'N' on entry, then WGHT is
C             set to 'A' on exit.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of samples.  N must be a power of 2.  N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (N)
C             On entry, this array must contain the first signal.
C             On exit, this array contains the convolution (if
C             CONV = 'C') or deconvolution (if CONV = 'D') of the two
C             signals.
C
C     B       (input) DOUBLE PRECISION array, dimension (N)
C             On entry, this array must contain the second signal.
C             NOTE that this array is overwritten.
C
C     W       (input/output) DOUBLE PRECISION array,
C                            dimension (N - LOG2(N))
C             On entry with WGHT = 'A', this array must contain the long
C             weight vector computed by a previous call of this routine
C             or of the SLICOT Library routine DG01OD.f, with the same
C             value of N. If WGHT = 'N', the contents of this array on
C             entry is ignored.
C             On exit, this array contains the long weight vector.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     This routine computes the convolution or deconvolution of two
C     real signals A and B using three scrambled Hartley transforms
C     (SLICOT Library routine DG01OD).
C
C     REFERENCES
C
C     [1] Van Loan, Charles.
C         Computational frameworks for the fast Fourier transform.
C         SIAM, 1992.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires O(N log(N)) floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, April 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Apr. 2000.
C
C     KEYWORDS
C
C     Convolution, deconvolution, digital signal processing,
C     fast Hartley transform, real signals.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  HALF, ONE, TWO
      PARAMETER         ( HALF = 0.5D0, ONE = 1.0D0, TWO = 2.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         CONV, WGHT
      INTEGER           INFO, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(*), B(*), W(*)
C     .. Local Scalars ..
      LOGICAL           LCONV, LWGHT
      INTEGER           J, L, LEN, M, P1, R1
      DOUBLE PRECISION  T1, T2, T3
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DG01OD, DLADIV, DSCAL, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MOD
C     .. Executable Statements ..
C
      INFO  = 0
      LCONV = LSAME( CONV, 'C' )
      LWGHT = LSAME( WGHT, 'A' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LCONV .AND. .NOT.LSAME( CONV, 'D' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LWGHT .AND. .NOT.LSAME( WGHT, 'N' ) ) THEN
         INFO = -2
      ELSE
         M = 0
         J = 0
         IF( N.GE.1 ) THEN
            J = N
C           WHILE ( MOD( J, 2 ).EQ.0 ) DO
   10       CONTINUE
            IF ( MOD( J, 2 ).EQ.0 ) THEN
               J = J/2
               M = M + 1
               GO TO 10
            END IF
C           END WHILE 10
            IF ( J.NE.1 ) INFO = -3
         ELSE IF ( N.LT.0 ) THEN
            INFO = -3
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'DE01PD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.LE.0 ) THEN
         RETURN
      ELSE IF ( N.EQ.1 ) THEN
         IF ( LCONV ) THEN
            A(1) = A(1)*B(1)
         ELSE
            A(1) = A(1)/B(1)
         END IF
         RETURN
      END IF
C
C     Scrambled Hartley transforms of A and B.
C
      CALL DG01OD( 'OutputScrambled', WGHT, N, A, W, INFO )
      CALL DG01OD( 'OutputScrambled', WGHT, N, B, W, INFO )
C
C     Something similar to a Hadamard product/quotient.
C
      LEN = 1
      IF( LCONV )  THEN
         A(1) = TWO*A(1)*B(1)
         A(2) = TWO*A(2)*B(2)
C
         DO 30 L = 1, M - 1
            LEN = 2*LEN
            R1  = 2*LEN
C
            DO 20 P1 = LEN + 1, LEN + LEN/2
               T1 = B(P1) + B(R1)
               T2 = B(P1) - B(R1)
               T3 = T2*A(P1)
               A(P1) = T1*A(P1) + T2*A(R1)
               A(R1) = T1*A(R1) - T3
               R1 = R1 - 1
   20       CONTINUE
C
   30    CONTINUE
C
      ELSE
C
         A(1) = HALF*A(1)/B(1)
         A(2) = HALF*A(2)/B(2)
C
         DO 50 L = 1, M - 1
            LEN = 2*LEN
            R1  = 2*LEN
C
            DO 40 P1 = LEN + 1, LEN + LEN/2
               CALL DLADIV( A(P1), A(R1), B(P1)+B(R1), B(R1)-B(P1), T1,
     $                      T2 )
               A(P1) = T1
               A(R1) = T2
               R1 = R1 - 1
   40       CONTINUE
C
   50    CONTINUE
C
      END IF
C
C     Transposed Hartley transform of A.
C
      CALL DG01OD( 'InputScrambled', WGHT, N, A, W, INFO )
      IF ( LCONV ) THEN
         CALL DSCAL( N, HALF/DBLE( N ), A, 1 )
      ELSE
         CALL DSCAL( N, TWO/DBLE( N ), A, 1 )
      END IF
C
      RETURN
C *** Last line of DE01PD ***
      END