File: DF01MD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (299 lines) | stat: -rw-r--r-- 8,421 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
      SUBROUTINE DF01MD( SICO, N, DT, A, DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the sine transform or cosine transform of a real
C     signal.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     SICO    CHARACTER*1
C             Indicates whether the sine transform or cosine transform
C             is to be computed as follows:
C             = 'S':  The sine transform is computed;
C             = 'C':  The cosine transform is computed.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of samples.  N must be a power of 2 plus 1.
C             N >= 5.
C
C     DT      (input) DOUBLE PRECISION
C             The sampling time of the signal.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (N)
C             On entry, this array must contain the signal to be
C             processed.
C             On exit, this array contains either the sine transform, if
C             SICO = 'S', or the cosine transform, if SICO = 'C', of the
C             given signal.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (N+1)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Let A(1), A(2),..., A(N) be a real signal of N samples.
C
C     If SICO = 'S', the routine computes the sine transform of A as
C     follows. First, transform A(i), i = 1,2,...,N, into the complex
C     signal B(i), i = 1,2,...,(N+1)/2, where
C
C        B(1) = -2*A(2),
C        B(i) = {A(2i-2) - A(2i)} - j*A(2i-1) for i = 2,3,...,(N-1)/2,
C        B((N+1)/2) = 2*A(N-1) and j**2 = -1.
C
C     Next, perform a discrete inverse Fourier transform on B(i) by
C     calling SLICOT Library Routine DG01ND, to give the complex signal
C     Z(i), i = 1,2,...,(N-1)/2, from which the real signal C(i) may be
C     obtained as follows:
C
C        C(2i-1) = Re(Z(i)),  C(2i) = Im(Z(i)) for i = 1,2,...,(N-1)/2.
C
C     Finally, compute the sine transform coefficients S ,S ,...,S
C                                                       1  2      N
C     given by
C
C        S  = 0,
C         1
C                {                     [C(k) + C(N+1-k)]     }
C        S  = DT*{[C(k) - C(N+1-k)] - -----------------------},
C         k      {                    [2*sin(pi*(k-1)/(N-1))]}
C
C           for k = 2,3,...,N-1, and
C
C        S = 0.
C         N
C
C     If SICO = 'C', the routine computes the cosine transform of A as
C     follows. First, transform A(i), i = 1,2,...,N, into the complex
C     signal B(i), i = 1,2,...,(N+1)/2, where
C
C        B(1) = 2*A(1),
C        B(i) = 2*A(2i-1) + 2*j*{[A(2i-2) - A(2i)]}
C        for i = 2,3,...,(N-1)/2 and B((N+1)/2) = 2*A(N).
C
C     Next, perform a discrete inverse Fourier transform on B(i) by
C     calling SLICOT Library Routine DG01ND, to give the complex signal
C     Z(i), i = 1,2,...,(N-1)/2, from which the real signal D(i) may be
C     obtained as follows:
C
C        D(2i-1) = Re(Z(i)),  D(2i) = Im(Z(i)) for i = 1,2,...,(N-1)/2.
C
C     Finally, compute the cosine transform coefficients S ,S ,...,S
C                                                         1  2      N
C     given by
C
C        S  = 2*DT*[D(1) + A0],
C         1
C                {                     [D(k) - D(N+1-k)]     }
C        S  = DT*{[D(k) + D(N+1-k)] - -----------------------},
C         k      {                    [2*sin(pi*(k-1)/(N-1))]}
C
C
C           for k = 2,3,...,N-1, and
C
C        S  = 2*DT*[D(1) - A0],
C         N
C                 (N-1)/2
C     where A0 = 2*SUM   A(2i).
C                  i=1
C
C     REFERENCES
C
C     [1] Rabiner, L.R. and Rader, C.M.
C         Digital Signal Processing.
C         IEEE Press, 1972.
C
C     [2] Oppenheim, A.V. and Schafer, R.W.
C         Discrete-Time Signal Processing.
C         Prentice-Hall Signal Processing Series, 1989.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires 0( N*log(N) ) operations.
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C     Supersedes Release 2.0 routine DF01AD by F. Dumortier, and
C     R.M.C. Dekeyser, State University of Gent, Belgium.
C
C     REVISIONS
C
C     V. Sima, Jan. 2003.
C
C     KEYWORDS
C
C     Digital signal processing, fast Fourier transform, complex
C     signals.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO, FOUR
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     $                    FOUR = 4.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         SICO
      INTEGER           INFO, N
      DOUBLE PRECISION  DT
C     .. Array Arguments ..
      DOUBLE PRECISION  A(*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           LSICO, LSIG
      INTEGER           I, I2, IND1, IND2, M, MD2
      DOUBLE PRECISION  A0, PIBYM, W1, W2, W3
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DG01ND, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ATAN, DBLE, MOD, SIN
C     .. Executable Statements ..
C
      INFO = 0
      LSICO = LSAME( SICO, 'S' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LSICO .AND. .NOT.LSAME( SICO, 'C' ) ) THEN
         INFO = -1
      ELSE
         M = 0
         IF( N.GT.4 ) THEN
            M = N - 1
C           WHILE ( MOD( M, 2 ).EQ.0 ) DO
   10       CONTINUE
            IF ( MOD( M, 2 ).EQ.0 ) THEN
               M = M/2
               GO TO 10
            END IF
C           END WHILE 10
         END IF
         IF ( M.NE.1 ) INFO = -2
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'DF01MD', -INFO )
         RETURN
      END IF
C
C     Initialisation.
C
      M = N - 1
      MD2 = ( N + 1 )/2
      PIBYM = FOUR*ATAN( ONE )/DBLE( M )
      I2 = 1
      DWORK(MD2+1) = ZERO
      DWORK(2*MD2) = ZERO
C
      IF ( LSICO ) THEN
C
C        Sine transform.
C
         LSIG = .TRUE.
         DWORK(1)  = -TWO*A(2)
         DWORK(MD2) = TWO*A(M)
C
         DO 20 I = 4, M, 2
            I2 = I2 + 1
            DWORK(I2) = A(I-2) - A(I)
            DWORK(MD2+I2) = -A(I-1)
   20    CONTINUE
C
      ELSE
C
C        Cosine transform.
C
         LSIG = .FALSE.
         DWORK(1)   = TWO*A(1)
         DWORK(MD2) = TWO*A(N)
         A0 = A(2)
C
         DO 30 I = 4, M, 2
            I2 = I2 + 1
            DWORK(I2) = TWO*A(I-1)
            DWORK(MD2+I2) = TWO*( A(I-2) - A(I) )
            A0 = A0 + A(I)
   30    CONTINUE
C
         A0 = TWO*A0
      END IF
C
C     Inverse Fourier transform.
C
      CALL DG01ND( 'Inverse', MD2-1, DWORK(1), DWORK(MD2+1), INFO )
C
C     Sine or cosine coefficients.
C
      IF ( LSICO ) THEN
         A(1) = ZERO
         A(N) = ZERO
      ELSE
         A(1) = TWO*DT*( DWORK(1) + A0 )
         A(N) = TWO*DT*( DWORK(1) - A0 )
      END IF
C
      IND1 = MD2 + 1
      IND2 = N
C
      DO 40 I = 1, M - 1, 2
         W1 = DWORK(IND1)
         W2 = DWORK(IND2)
         IF ( LSIG ) W2 = -W2
         W3 = TWO*SIN( PIBYM*DBLE( I ) )
         A(I+1) = DT*( W1 + W2 - ( W1 - W2 )/W3 )
         IND1 = IND1 + 1
         IND2 = IND2 - 1
   40 CONTINUE
C
      IND1 = 2
      IND2 = MD2 - 1
C
      DO 50 I = 2, M - 2, 2
         W1 = DWORK(IND1)
         W2 = DWORK(IND2)
         IF ( LSIG ) W2 = -W2
         W3 = TWO*SIN( PIBYM*DBLE( I ) )
         A(I+1) = DT*( W1 + W2 - ( W1 - W2 )/W3 )
         IND1 = IND1 + 1
         IND2 = IND2 - 1
   50 CONTINUE
C
      RETURN
C *** Last line of DF01MD ***
      END