File: DG01ND.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (247 lines) | stat: -rw-r--r-- 8,598 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
      SUBROUTINE DG01ND( INDI, N, XR, XI, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the discrete Fourier transform, or inverse Fourier
C     transform, of a real signal.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     INDI    CHARACTER*1
C             Indicates whether a Fourier transform or inverse Fourier
C             transform is to be performed as follows:
C             = 'D':  (Direct) Fourier transform;
C             = 'I':  Inverse Fourier transform.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             Half the number of real samples.  N must be a power of 2.
C             N >= 2.
C
C     XR      (input/output) DOUBLE PRECISION array, dimension (N+1)
C             On entry with INDI = 'D', the first N elements of this
C             array must contain the odd part of the input signal; for
C             example, XR(I) = A(2*I-1) for I = 1,2,...,N.
C             On entry with INDI = 'I', the first N+1 elements of this
C             array must contain the the real part of the input discrete
C             Fourier transform (computed, for instance, by a previous
C             call of the routine).
C             On exit with INDI = 'D', the first N+1 elements of this
C             array contain the real part of the output signal, that is
C             of the computed discrete Fourier transform.
C             On exit with INDI = 'I', the first N elements of this
C             array contain the odd part of the output signal, that is
C             of the computed inverse discrete Fourier transform.
C
C     XI      (input/output) DOUBLE PRECISION array, dimension (N+1)
C             On entry with INDI = 'D', the first N elements of this
C             array must contain the even part of the input signal; for
C             example, XI(I) = A(2*I) for I = 1,2,...,N.
C             On entry with INDI = 'I', the first N+1 elements of this
C             array must contain the the imaginary part of the input
C             discrete Fourier transform (computed, for instance, by a
C             previous call of the routine).
C             On exit with INDI = 'D', the first N+1 elements of this
C             array contain the imaginary part of the output signal,
C             that is of the computed discrete Fourier transform.
C             On exit with INDI = 'I', the first N elements of this
C             array contain the even part of the output signal, that is
C             of the computed inverse discrete Fourier transform.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Let A(1),....,A(2*N) be a real signal of 2*N samples. Then the
C     first N+1 samples of the discrete Fourier transform of this signal
C     are given by the formula:
C
C                  2*N           ((m-1)*(i-1))
C          FA(m) = SUM ( A(i) * W              ),
C                  i=1
C                                                  2
C     where m = 1,2,...,N+1, W = exp(-pi*j/N) and j = -1.
C
C     This transform can be computed as follows. First, transform A(i),
C     i = 1,2,...,2*N, into the complex signal Z(i) = (X(i),Y(i)),
C     i = 1,2,...,N. That is, X(i) = A(2*i-1) and Y(i) = A(2*i). Next,
C     perform a discrete Fourier transform on Z(i) by calling SLICOT
C     Library routine DG01MD. This gives a new complex signal FZ(k),
C     such that
C
C                   N            ((k-1)*(i-1))
C          FZ(k) = SUM ( Z(i) * V              ),
C                  i=1
C
C     where k = 1,2,...,N, V = exp(-2*pi*j/N).  Using the values of
C     FZ(k), the components of the discrete Fourier transform FA can be
C     computed by simple linear relations, implemented in the DG01NY
C     subroutine.
C
C     Finally, let
C
C          XR(k) = Re(FZ(k)), XI(k) = Im(FZ(k)),   k = 1,2,...,N,
C
C     be the contents of the arrays XR and XI on entry to DG01NY with
C     INDI = 'D', then on exit XR and XI contain the real and imaginary
C     parts of the Fourier transform of the original real signal A.
C     That is,
C
C          XR(m) = Re(FA(m)),  XI(m) = Im(FA(m)),
C
C     where m = 1,2,...,N+1.
C
C     If INDI = 'I', then the routine evaluates the inverse Fourier
C     transform of a complex signal which may itself be the discrete
C     Fourier transform of a real signal.
C
C     Let FA(m), m = 1,2,...,2*N, denote the full discrete Fourier
C     transform of a real signal A(i), i=1,2,...,2*N. The relationship
C     between FA and A is given by the formula:
C
C                 2*N            ((m-1)*(i-1))
C          A(i) = SUM ( FA(m) * W              ),
C                 m=1
C
C     where W = exp(pi*j/N).
C
C     Let
C
C          XR(m) = Re(FA(m)) and XI(m) = Im(FA(m)) for m = 1,2,...,N+1,
C
C     be the contents of the arrays XR and XI on entry to the routine
C     DG01NY with INDI = 'I', then on exit the first N samples of the
C     complex signal FZ are returned in XR and XI such that
C
C          XR(k) = Re(FZ(k)), XI(k) = Im(FZ(k)) and k = 1,2,...,N.
C
C     Next, an inverse Fourier transform is performed on FZ (e.g. by
C     calling SLICOT Library routine DG01MD), to give the complex signal
C     Z, whose i-th component is given by the formula:
C
C                  N             ((k-1)*(i-1))
C          Z(i) = SUM ( FZ(k) * V              ),
C                 k=1
C
C     where i = 1,2,...,N and V = exp(2*pi*j/N).
C
C     Finally, the 2*N samples of the real signal A can then be obtained
C     directly from Z. That is,
C
C          A(2*i-1) = Re(Z(i)) and A(2*i) = Im(Z(i)), for i = 1,2,...N.
C
C     Note that a discrete Fourier transform, followed by an inverse
C     transform will result in a signal which is a factor 2*N larger
C     than the original input signal.
C
C     REFERENCES
C
C     [1] Rabiner, L.R. and Rader, C.M.
C         Digital Signal Processing.
C         IEEE Press, 1972.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires 0( N*log(N) ) operations.
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C     Supersedes Release 2.0 routine DG01BD by R. Dekeyser, and
C     F. Dumortier, State University of Gent, Belgium.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Complex signals, digital signal processing, fast Fourier
C     transform, real signals.
C
C     ******************************************************************
C
C     .. Scalar Arguments ..
      CHARACTER         INDI
      INTEGER           INFO, N
C     .. Array Arguments ..
      DOUBLE PRECISION  XI(*), XR(*)
C     .. Local Scalars ..
      INTEGER           J
      LOGICAL           LINDI
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DG01MD, DG01NY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MOD
C     .. Executable Statements ..
C
      INFO = 0
      LINDI = LSAME( INDI, 'D' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LINDI .AND. .NOT.LSAME( INDI, 'I' ) ) THEN
         INFO = -1
      ELSE
         J = 0
         IF( N.GE.2 ) THEN
            J = N
C           WHILE ( MOD( J, 2 ).EQ.0 ) DO
   10       CONTINUE
            IF ( MOD( J, 2 ).EQ.0 ) THEN
               J = J/2
               GO TO 10
            END IF
C           END WHILE 10
         END IF
         IF ( J.NE.1 ) INFO = -2
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'DG01ND', -INFO )
         RETURN
      END IF
C
C     Compute the Fourier transform of Z = (XR,XI).
C
      IF ( .NOT.LINDI ) CALL DG01NY( INDI, N, XR, XI )
C
      CALL DG01MD( INDI, N, XR, XI, INFO )
C
      IF ( LINDI ) CALL DG01NY( INDI, N, XR, XI )
C
      RETURN
C *** Last line of DG01ND ***
      END